Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is still much debate to whether pulmonary sequestration is a congenital problem or acquired through reccurent pulmonary infection. It is widely believed that extralobar pulmonary sequestrations are a result of prenatal pulmonary malformation while intralobar pulmonary sequestrations can develop due to reccurent pulmonary infections in adolescents and young adults.
It is most commonly caused by:
- Oesophageal rupture, for example in Boerhaave syndrome
- Asthma or other conditions leading to alveolar rupture
- Bowel rupture, where air in the abdominal cavity tracts up into the chest.
It has also been associated with:
- "Mycoplasma pneumoniae" pneumonia
- obesity
It can be induced to assist thoracoscopic surgery. It can be caused by a pulmonary barotrauma resulting when a person moves to or from a higher pressure environment, such as when a SCUBA diver, a free-diver or an airplane passenger ascends or descends.
In rare cases, pneumomediastinum may also arise as a result of blunt chest trauma (e.g. car accidents, fights, over pressure of breathing apparatus), while still evolving in the same fashion as the spontaneous form.
Pneumomediastinum is most commonly seen in otherwise healthy young male patients and may not be prefaced by a relevant medical history of similar ailments.
Failure to have a pulmonary sequestration removed can lead to a number of complications. These include:
- Hemorrhage that can be fatal.
- The creation of a left-right shunt, where blood flows in a shortcut through the feed off the aorta.
- Chronic infection. Diseases such as bronchiectasis, tuberculosis, aspergillosis, bronchial carcinoid and bronchogenic squamous cell carcinoma.
Pulmonary hypoplasia is incomplete development of the lungs, resulting in an abnormally low number or size of bronchopulmonary segments or alveoli. A congenital malformation, it most often occurs secondary to other fetal abnormalities that interfere with normal development of the lungs. Primary (idiopathic) pulmonary hypoplasia is rare and usually not associated with other maternal or fetal abnormalities.
Incidence of pulmonary hypoplasia ranges from 9–11 per 10,000 live births and 14 per 10,000 births. Pulmonary hypoplasia is a relatively common cause of neonatal death. It also is a common finding in stillbirths, although not regarded as a cause of these.
Causes of pulmonary hypoplasia include a wide variety of congenital malformations and other conditions in which pulmonary hypoplasia is a complication. These include congenital diaphragmatic hernia, congenital cystic adenomatoid malformation, fetal hydronephrosis, caudal regression syndrome, mediastinal tumor, and sacrococcygeal teratoma with a large component inside the fetus. Large masses of the neck (such as cervical teratoma) also can cause pulmonary hypoplasia, presumably by interfering with the fetus's ability to fill its lungs. In the presence of pulmonary hypoplasia, the EXIT procedure to rescue a baby with a neck mass is not likely to succeed.
Fetal hydrops can be a cause, or conversely a complication.
Pulmonary hypoplasia is associated with oligohydramnios through multiple mechanisms. Both conditions can result from blockage of the urinary bladder. Blockage prevents the bladder from emptying, and the bladder becomes very large and full. The large volume of the full bladder interferes with normal development of other organs, including the lungs. Pressure within the bladder becomes abnormally high, causing abnormal function in the kidneys hence abnormally high pressure in the vascular system entering the kidneys. This high pressure also interferes with normal development of other organs. An experiment in rabbits showed that PH also can be caused directly by oligohydramnios.
Pulmonary hypoplasia is associated with dextrocardia of embryonic arrest in that both conditions can result from early errors of development, resulting in Congenital cardiac disorders.
PH is a common direct cause of neonatal death resulting from pregnancy induced hypertension.
Pulmonary diseases may also impact newborns, such as pulmonary hyperplasia, pulmonary interstitial emphysema (usually preterm births), and infant respiratory distress syndrome,
Respiratory disease is a common and significant cause of illness and death around the world. In the US, approximately 1 billion "common colds" occur each year. A study found that in 2010, there were approximately 6.8 million emergency department visits for respiratory disorders in the U.S. for patients under the age of 18. In 2012, respiratory conditions were the most frequent reasons for hospital stays among children.
In the UK, approximately 1 in 7 individuals are affected by some form of chronic lung disease, most commonly chronic obstructive pulmonary disease, which includes asthma, chronic bronchitis and emphysema.
Respiratory diseases (including lung cancer) are responsible for over 10% of hospitalizations and over 16% of deaths in Canada.
In 2011, respiratory disease with ventilator support accounted for 93.3% of ICU utilization in the United States.
Pneumomediastinum (from Greek "pneuma" – "air", also known as mediastinal emphysema) is (abnormal presence of air or other gas) in the mediastinum. First described in 1819 by René Laennec, the condition can result from physical trauma or other situations that lead to air escaping from the lungs, airways, or bowel into the chest cavity.
The mediastinum (from Medieval Latin "mediastinus", "midway") is the central compartment of the thoracic cavity surrounded by loose connective tissue, as an undelineated region that contains a group of structures within the thorax. The mediastinum contains the heart and its vessels, the esophagus, trachea, phrenic and cardiac nerves, the thoracic duct, thymus and lymph nodes of the central chest.
The following are causes of BHL:
- Sarcoidosis
- Infection
- Tuberculosis
- Fungal infection
- Mycoplasma
- Intestinal Lipodystrophy (Whipple's disease)
- Malignancy
- Lymphoma
- Carcinoma
- Mediastinal tumors
- Inorganic dust disease
- Silicosis
- Berylliosis
- Extrinsic allergic alveolitis
- Such as bird fancier's lung
- Less common causes also exist:
- Eosinophilic granulomatosis with polyangiitis
- Human immunodeficiency virus
- Extrinsic allergic alveolitis
- Adult-onset Still's disease
Mediastinal fibrosis most common cause is idiopathic mediastinal fibrosis; less commonly histoplasmosis tuberculosis or unknown. It is characterized by invasive, calcified fibrosis centered on lymph nodes that block major vessels and airways. In Europe, this disease is exceptionally rare. More cases are seen
in USA where the disease may often be associated with histoplasmosis.
Bilateral hilar lymphadenopathy is a bilateral enlargement of the lymph nodes of pulmonary hila. It is a radiographic term that describes the enlargement of mediastinal lymph nodes and is most commonly identified by a chest x-ray.
The death rate of people with flail chest depends on the severity of their condition, ranging from 10 to 25%.
Pneumopericardium is a medical condition where air enters the pericardial cavity. This condition has been recognized in preterm neonates, in which it is associated with severe lung pathology, after vigorous resuscitation, or in the presence of assisted ventilation. This is a serious complication, which if untreated may lead to cardiac tamponade and death. Pneumomediastinum, which is the presence of air in the mediastinum, may mimic and also coexist with pneumopericardium.
It can be congenital, or introduced by a wound.
The mechanism responsible for pneumopericardium is the ‘Macklin effect’ – There is initially an increased pressure gradient between the alveoli and the interstitial space. Increased pressure leads to alveolar rupture, resulting in air getting through to the pericapillary interstitial pulmonary space. This space is continuous with the peribronchial and pulmonary perivascular sheaths. From here, the air tracks to the hilum of the lung and then to the mediastinum. In case of a pericardial tear, this air enters the pericardial cavity and pneumopericardium develops. The condition may remain asymptomatic or may progress to life-threatening conditions like tension pneumopericardium or cardiac tamponade.
Besides complications of surgery and anesthesia in general, there may be drainage, swelling, or redness of the incision, gagging or coughing during eating or drinking, or pneumonia due to aspiration of food or liquids. Undesirable complications are estimated to occur in 10-30% of cases. If medical therapy is unsuccessful and surgery cannot be performed due to concurrent disease (such as heart or lung problems) or cost, euthanasia may be necessary if the animal's quality of life is considered unacceptable due to the disease.
Injury to the lung may also cause pulmonary edema through injury to the vasculature and parenchyma of the lung. The acute lung injury-acute respiratory distress syndrome (ALI-ARDS) covers many of these causes, but they may include:
- Inhalation of hot or toxic gases
- Pulmonary contusion, i.e., high-energy trauma (e.g. vehicle accidents)
- Aspiration, e.g., gastric fluid
- Reexpansion, i.e. post large volume thoracocentesis, resolution of pneumothorax, post decortication, removal of endobronchial obstruction, effectively a form of negative pressure pulmonary oedema.
- Reperfusion injury, i.e. postpulmonary thromboendartectomy or lung transplantation
- Swimming induced pulmonary edema also known as immersion pulmonary edema
- Transfusion Associated Circulatory Overload (TACO) occurs when multiple blood transfusions or blood-products (plasma, platelets, etc.) are transfused over a short period of time.
- Transfusion associated Acute Lung Injury (TRALI) is a specific type of blood-product transfusion injury that occurs when the donors plasma contained antibodies against the donor, such as anti-HLA or anti-neutrophil antibodies.
- Severe infection or inflammation which may be local or systemic. This is the classical form of ALI-ARDS.
Some causes of pulmonary edema are less well characterised and arguably represent specific instances of the broader classifications above.
- Arteriovenous malformation
- Hantavirus pulmonary syndrome
- High altitude pulmonary edema (HAPE)
- Envenomation, such as with the venom of Atrax robustus
The mediastinum is the cavity that separates the lungs from the rest of the chest. It contains the heart, esophagus, trachea, thymus, and aorta. The mediastinum has three main parts: the anterior mediastinum (front), the middle mediastinum, and the posterior mediastinum (back).
The most common mediastinal masses are neurogenic tumors (20% of mediastinal tumors), usually found in the posterior mediastinum, followed by thymoma (15-20%) located in the anterior mediastinum.
Masses in the anterior portion of the mediastinum can include thymoma, lymphoma, pheochromocytoma, germ cell tumors including teratoma, thyroid tissue, and parathyroid lesions. Masses in this area are more likely to be malignant than those in other compartments.
Masses in the posterior portion of the mediastinum tend to be neurogenic in origin, and in adults tend to be of neural sheath origin including neurilemomas and neurofibromas.
Lung cancer typically spreads to the lymph nodes in the mediastinum.
Approximately 1 out of 13 people admitted to the hospital with fractured ribs are found to have flail chest.
Assisted reproductive technology (ART) is a general term referring to methods used to achieve pregnancy by artificial or partially artificial means. According to the CDC, in general, ART procedures involve surgically removing eggs from a woman's ovaries, combining them with sperm in the laboratory, and returning them to the woman's body or donating them to another woman. ART has been associated with epigenetic syndromes, specifically BWS and Angelman syndrome. Three groups have shown an increased rate of ART conception in children with BWS. A retrospective case control study from Australia found a 1 in 4000 risk of BWS in their in-vitro population, several times higher than the general population. Another study found that children conceived by in vitro fertilisation (IVF) are three to four times more likely to develop the condition. No specific type of ART has been more closely associated with BWS. The mechanism by which ART produces this effect is still under investigation.
The prevalence has been estimated at 1 in 10,000 births, but exact values are hard to know because some that have the symptoms rarely have Pierre-Robin sequence (without any other associated malformation).
A baby with a prenatally diagnosed cystic hygroma should be delivered in a major medical center equipped to deal with neonatal complications, such as a neonatal intensive care unit. An obstetrician usually decides the method of delivery. If the cystic hygroma is large, a cesarean section may be performed. After birth, infants with a persistent cystic hygroma must be monitored for airway obstruction. A thin needle may be used to reduce the volume of the cystic hygroma to prevent facial deformities and airway obstruction. Close observation of the baby by a neonatologist after birth is recommended. If resolution of the cystic hygroma does not occur before birth, a pediatric surgeon should be consulted.
Cystic hygromas that develop in the third trimester, after thirty weeks gestation, or in the postnatal period are usually not associated with chromosome abnormalities. There is a chance of recurrence after surgical removal of the cystic hygroma. The chance of recurrence depends on the extent of the cystic hygroma and whether its wall was able to be completely removed.
Treatments for removal of cystic hygroma are surgery or sclerosing agents which include:
- Bleomycin
- Doxycycline
- Ethanol (pure)
- Picibanil (OK-432)
- Sodium tetradecyl sulfate
Lymphangiomas are rare, accounting for 4% of all vascular tumors in children. Although lymphangioma can become evident at any age, 50% are seen at birth, and 90% of lymphangiomas are evident by 2 years of age.
The direct cause of lymphangioma is a blockage of the lymphatic system as a fetus develops, although symptoms may not become visible until after the baby is born. The cause remains unknown. Why the embryonic lymph sacs remain disconnected from the rest of the lymphatic system is also not known.
Cystic lymphangioma that emerges during the first two trimesters of pregnancy is associated with genetic disorders such as Noonan syndrome and trisomies 13, 18, and 21. Chromosomal aneuploidy such as Turner syndrome or Down syndrome were found in 40% of patients with cystic hygroma.
Second most common primary anterior mediastinal mass in adults. Most are seen in the anterior compartment and rest are seen in middle compartment. Hodgkin's usually present in 40-50's with nodular sclerosing type (7), and non-Hodgkin's in all age groups. Can also be primary mediastinal B-cell lymphoma with exceptionally good prognosis. Common symptoms include fever, weight loss, night sweats, and compressive symptoms such as pain, dyspnea, wheezing, Superior vena cava syndrome, pleural effusions (10,11). Diagnosis usually by CT showing lobulated mass. Confirmation done by tissue biopsy of accompanying nodes if any, mediastinoscopy, mediastinotomy, or thoracotomy. FNA biopsy is usually not adequate. (12,13,14) Treatment of mediastinal Hodgkin's involves chemotherapy and/or radiation. 5 year survival is now around 75%. (15) Large-cell type may have somewhat better prognosis. Surgery is generally not performed because of invasive nature of tumor.
Of all cancers involving the same class of blood cell, 2% of cases are mediastinal large B cell lymphomas.