Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Different corneal dystrophies are caused by mutations in the CHST6, KRT3, KRT12, PIP5K3, SLC4A11, TACSTD2, TGFBI, and UBIAD1 genes. Mutations in TGFBI which encodes "transforming growth factor beta induced" cause several forms of corneal dystrophies including granular corneal dystrophy, lattice corneal dystrophy, epithelial basement membrane dystrophy, Reis-Bucklers corneal dystrophy, and Thiel–Behnke dystrophy.
Corneal dystrophies may have a simple autosomal dominant, autosomal recessive or rarely X-linked recessive Mendelian mode of inheritance:
Reis-Bücklers corneal dystrophy is not associated with any systemic conditions.
Few studies have examined the prevalence of FCED on a large scale. First assessed in a clinical setting, Fuchs himself estimated the occurrence of dystrophia epithelialis corneae to be one in every 2000 patients; a rate that is likely reflective of those who progress to advanced disease. Cross-sectional studies suggest a relatively higher prevalence of disease in European countries relative to other areas of the world. Fuchs' dystrophy rarely affects individuals under 50 years of age.
Recurrence within a few years occurs in all patients following corneal transplantation. Soft contact lenses are effective in decreasing recurrences.
Early stages may be asymptomatic and may not require any intervention. Initial treatment may include hypertonic eyedrops and ointment to reduce the corneal edema and may offer symptomatic improvement prior to surgical intervention.
Suboptimal vision caused by corneal dystrophy usually requires surgical intervention in the form of corneal transplantation. Penetrating keratoplasty, a common type of corneal transplantation, is commonly performed for extensive corneal dystrophy.
With penetrating keratoplasty (corneal transplant), the long-term results are good to excellent. Recent surgical improvements have been made which have increased the success rate for this procedure. However, recurrence of the disease in the donor graft may happen. Superficial corneal dystrophies do not need a penetrating keratoplasty as the deeper corneal tissue is unaffected, therefore a lamellar keratoplasty may be used instead.
Phototherapeutic keratectomy (PTK) can be used to excise or ablate the abnormal corneal tissue. Patients with superficial corneal opacities are suitable candidates for a this procedure.
Corneal transplant is not needed except in very severe and late cases.
Light sensitivity may be overcome by wearing tinted glassess.
The disease has been associated with mutations in TGFBI gene on chromosome 5q which encodes for keratoepithelin. The inheritance is autosomal dominant.
Granular corneal dystrophy is a slowly progressive corneal dystrophy that most often begins in early childhood.
Granular corneal dystrophy has two types:
- Granular corneal dystrophy type I , also corneal dystrophy Groenouw type I, is a rare form of human corneal dystrophy. It was first described by German ophthalmologist Arthur Groenouw in 1890.
- Granular corneal dystrophy type II, also called Avellino corneal dystrophy or combined granular-lattice corneal dystrophy is also a rare form of corneal dystrophy. The disorder was first described by Folberg et al. in 1988. The name Avellino corneal dystrophy comes from the first four patients in the original study each tracing their family origin to the Italian province of Avellino.
Phototherapeutic keratectomy (PTK) done by an ophthalmologist can restore and preserve useful visual function for a significant period of time in patients with anterior corneal dystrophies including EBMD.
Lattice corneal dystrophy has two types:
- type I: with no systemic association. It is caused by mutations in TGFBI gene encoding keratoepithelin, which maps to chromosome 5q.
- type II or Finnish type amyloidosis: associated with manifestations of systemic amyloidosis due to accumulation of gelsolin. Associated conditions may include cutis laxa and ataxia.
- type III is also described which has an onset at age 70 to 90 years and is not associated with systemic amyloidosis.
In case of corneal erosion, a doctor may prescribe eye drops and ointments to reduce the friction on the eroded cornea. In some cases, an eye patch may be used to immobilize the eyelids. With effective care, these erosions usually heal within three to seven days, although occasional sensations of pain may occur for the next six-to-eight weeks. As patients with LCD suffer with dry eyes as a result of erosion, a new technique involving the insertion of punctal plugs (both upper and lower) can reduce the amount of drops used a day, aiding ocular stability.
By about age 40, some people with lattice dystrophy will have scarring under the epithelium, resulting in a haze on the cornea that can greatly obscure vision. In this case, a corneal transplantation may be needed. There have been many cases in which teenage patients have had the procedure, which accounts for the change in severity of the condition from person to person.
Although people with lattice dystrophy have an excellent chance for a successful corneal transplantation, the disease may also arise in the donor cornea in as little as three years. In one study, about half of the transplant patients with lattice dystrophy had a recurrence of the disease between two and 26 years after the operation. Of these, 15 percent required a second corneal transplant. Early lattice and recurrent lattice arising in the donor cornea responds well to treatment with the excimer laser.
Phototherapeutic keratectomy (PTK) using [Excimer laser] can restore and preserve useful visual function for a significant period of time in patients with anterior corneal dystrophies.
A number of mutations causing this disease have been described in the M1S1 (TACSTD2) gene encoding "Tumor-associated calcium signal transducer 2", but not all patients have these mutations, suggesting involvement of other genes.
The incidence and prevalence of PMD are unknown, and no studies have yet investigated its prevalence or incidence. However, it is generally agreed that PMD is a very rare condition. Some uncertainty regarding the incidence of PMD may be attributed to its confusion with keratoconus. PMD is not linked to race or age, although most cases present early in life, between 20 and 40 years of age. While PMD is usually considered to affect men and women equally, some studies suggest that it may affect men more frequently.
Several diseases have been observed in patients with PMD. However, no causal relationships have been established between any of the associated diseases and the pathogenesis of PMD. Such diseases include: chronic open-angle glaucoma, retinitis pigmentosa, retinal lattice degeneration, scleroderma, kerato-conjunctivitis, eczema, and hyperthyroidism.
To clarify whether Thiel–Behnke corneal dystrophy is a separate entity from Reis-Bucklers corneal dystrophy, Kuchle et al. (1995) examined 28 corneal specimens with a clinically suspected diagnosis of corneal dystrophy of the Bowman layer by light and electron microscopy and reviewed the literature and concluded that 2 distinct autosomal dominant corneal dystrophy of Bowman layer (CBD) exist and proposed the designation CDB type I (geographic or 'true' Reis-Bucklers dystrophy) and CDB type II (honeycomb-shaped or Thiel–Behnke dystrophy). Visual loss is significantly greater in CDB I, and recurrences after corneal transplantation seem to be earlier and more extensive in CDB I.
This slowly progressive disorder is characterized by small cysts in the epithelium of the cornea. Patients with Meesmann corneal dystrophy are intolerant of contact lenses, as these devices directly traumatize the corneal epithelium.
Epithelial basement membrane dystrophy (EBMD), also known as map-dot-fingerprint dystrophy and Cogans's microcystic dystrophy, is a disorder of the eye that can cause pain and dryness.
It is sometimes included in the group of corneal dystrophies. It diverges from the formal definition of corneal dystrophy in being in most cases non-familial. It also has a fluctuating course, while for a typical corneal dystrophy the course is progressive. When it is considered part of this group, it is the most common type of corneal dystrophy.
Retinitis pigmentosa is the leading cause of inherited blindness, with approximately 1/4,000 individuals experiencing the non-syndromic form of their disease within their lifetime. It is estimated that 1.5 million people worldwide are currently affected. Early onset RP occurs within the first few years of life and is typically associated with syndromic disease forms, while late onset RP emerges from early to mid-adulthood.
Autosomal dominant and recessive forms of retinitis pigmentosa affect both male and female populations equally; however, the less frequent X-linked form of the disease affects male recipients of the X-linked mutation, while females usually remain unaffected carriers of the RP trait. The X-linked forms of the disease are considered severe, and typically lead to complete blindness during later stages. In rare occasions, a dominant form of the X-linked gene mutation will affect both males and females equally.
Due to the genetic inheritance patterns of RP, many isolate populations exhibit higher disease frequencies or increased prevalence of a specific RP mutation. Pre-existing or emerging mutations that contribute to rod photoreceptor degeneration in retinitis pigmentosa are passed down through familial lines; thus, allowing certain RP cases to be concentrated to specific geographical regions with an ancestral history of the disease. Several hereditary studies have been performed to determine the varying prevalence rates in Maine (USA), Birmingham (England), Switzerland (affects 1/7000), Denmark (affects 1/2500), and Norway. Navajo Indians display an elevated rate of RP inheritance as well, which is estimated as affecting 1 in 1878 individuals. Despite the increased frequency of RP within specific familial lines, the disease is considered non-discriminatory and tends to equally affect all world populations.
"Best disease" is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In most cases, an affected person has one parent with the condition.
The inheritance pattern of adult-onset vitelliform macular dystrophy is definitively autosomal dominant. Many affected people, however, have no history of the disorder in their family and only a small number of affected families have been reported. This is because the penetrance of the condition is incomplete; therefore, it is possible for an individual to have a copy of the mutant allele and not display the VMD phenotype. The ratio of males to females is approximately 1:1.
Congenital stromal corneal dystrophy (CSCD), also called Witschel dystrophy, is an extremely rare, autosomal dominant form of corneal dystrophy. Only 4 families have been reported to have the disease by 2009. The main features of the disease are numerous opaque flaky or feathery areas of clouding in the stroma that multiply with age and eventually preclude visibility of the endothelium. Strabismus or primary open angle glaucoma was noted in some of the patients. Thickness of the cornea stays the same, Descemet's membrane and endothelium are relatively unaffected, but the fibrills of collagen that constitute stromal lamellae are reduced in diameter and lamellae themselves are packed significantly more tightly.
It has been associated with genes KRT3 and KRT12 located on chromosome 12 and 17 respectively.
Some cases of it are linked to chromosome 10q24, others stem from a mutation in the TGFBI gene.
Schnyder crystalline corneal dystrophy (SCD) is a rare form of corneal dystrophy. It is caused by heterozygous mutations in UBIAD1 gene. Cells in the cornea accumulate cholesterol and phosopholipid deposits leading to the opacity, in severe cases requiring corneal transplants. Abnormal cholesterol metabolism has been noted in other cell types of affected patients (skin fibroblasts) suggesting that this may be a systemic disorder with clinical manifestations limited to the cornea.
In the recessive form corneal clouding is observed at birth or within the neonatal period, nystagmus is often present, but no photophobia or epiphora is seen. In the autosomal dominant type corneal opacification is usually seen in the first or second year of life and progresses slowly, and nystagmus is infrequently seen.
CSCD is associated with a mutation in the gene DCN that encodes the protein decorin, located at chromosome 12q22. The disorder is inherited in an autosomal dominant manner, which indicates that the defective gene responsible for a disorder is located on an autosome (chromosome 12 is an autosome), and only one copy of the gene is sufficient to cause the disorder, when inherited from a parent who has the disorder.
Congenital hereditary corneal dystrophy (CHED) is a form of corneal dystrophy which presents at birth.