Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Assisted reproductive technology (ART) is a general term referring to methods used to achieve pregnancy by artificial or partially artificial means. According to the CDC, in general, ART procedures involve surgically removing eggs from a woman's ovaries, combining them with sperm in the laboratory, and returning them to the woman's body or donating them to another woman. ART has been associated with epigenetic syndromes, specifically BWS and Angelman syndrome. Three groups have shown an increased rate of ART conception in children with BWS. A retrospective case control study from Australia found a 1 in 4000 risk of BWS in their in-vitro population, several times higher than the general population. Another study found that children conceived by in vitro fertilisation (IVF) are three to four times more likely to develop the condition. No specific type of ART has been more closely associated with BWS. The mechanism by which ART produces this effect is still under investigation.
Patients with abnormal cardiac and kidney function may be more at risk for hemolytic uremic syndrome
The incidence of VACTERL association is estimated to be approximately 1 in 10,000 to 1 in 40,000 live-born infants. It is seen more frequently in infants born to diabetic mothers. While most cases are sporadic, there are clearly families who present with multiple involved members.
Beckwith–Wiedemann syndrome has an estimated incidence of one in 13,700; about 300 children with BWS are born each year in the United States. The exact incidence of BWS is unknown because of the marked variability in the syndrome's presentation and difficulties with diagnosis. The number of reported infants born with BWS is most likely low because many are born with BWS, but have clinical features that are less prominent and therefore missed. BWS has been documented in a variety of ethnic groups and occurs equally in males and females.
Children conceived through In vitro fertilization have a three to fourfold increased chance of developing Beckwith–Wiedemann syndrome. It is thought that this is due to genes being turned on or off by the IVF procedures.
The reported incidence of constriction ring syndrome varies from 1/1200 and 1/15000 live births. The prevalence is equally in male and female.
Fetomaternal factors like prematurity, maternal illnes, low birth weight and maternal drug exposure are predisposing factors for the constriction ring syndrome.
No positive relationship between CRS and genetic inheritance has been reported.
Heart-hand syndrome type 2 is also known as Berk–Tabatznik syndrome. Berk–Tabatznik syndrome is a condition with an unknown cause that shows symptoms of short stature, congenital optic atrophy and brachytelephalangy. This condition is extremely rare with only two cases being found.
Heart-hand syndrome type 3 is very rare and has been described only in three members of a Spanish family. It is also known as Heart-hand syndrome, Spanish type.
Roberts syndrome is an extremely rare condition that only affects about 150 reported individuals. Although there have been only about 150 reported cases, the affected group is quite diverse and spread worldwide. Parental consanguinity (parents are closely related) is common with this genetic disorder. The frequency of Roberts syndrome carriers is unknown.
The overall prognosis is excellent in most cases. Most children with Adams–Oliver syndrome can likely expect to have a normal life span. However, individuals with more severe scalp and cranial defects may experience complications such as hemorrhage and meningitis, leading to long-term disability.
A low socioeconomic status in a deprived neighborhood may include exposure to “environmental stressors and risk factors.” Socioeconomic inequalities are commonly measured by the Cartairs-Morris score, Index of Multiple Deprivation, Townsend deprivation index, and the Jarman score. The Jarman score, for example, considers “unemployment, overcrowding, single parents, under-fives, elderly living alone, ethnicity, low social class and residential mobility.” In Vos’ meta-analysis these indices are used to view the effect of low SES neighborhoods on maternal health. In the meta-analysis, data from individual studies were collected from 1985 up until 2008. Vos concludes that a correlation exists between prenatal adversities and deprived neighborhoods. Other studies have shown that low SES is closely associated with the development of the fetus in utero and growth retardation. Studies also suggest that children born in low SES families are “likely to be born prematurely, at low birth weight, or with asphyxia, a birth defect, a disability, fetal alcohol syndrome, or AIDS.” Bradley and Corwyn also suggest that congenital disorders arise from the mother’s lack of nutrition, a poor lifestyle, maternal substance abuse and “living in a neighborhood that contains hazards affecting fetal development (toxic waste dumps).” In a meta-analysis that viewed how inequalities influenced maternal health, it was suggested that deprived neighborhoods often promoted behaviors such as smoking, drug and alcohol use. After controlling for socioeconomic factors and ethnicity, several individual studies demonstrated an association with outcomes such as perinatal mortality and preterm birth.
The effects of paternal age on offspring are not yet well understood and are studied far less extensively than the effects of maternal age. Fathers contribute proportionally more DNA mutations to their offspring via their germ cells than the mother, with the paternal age governing how many mutations are passed on. This is because, as humans age, male germ cells acquire mutations at a much faster rate than female germ cells.
Around a 5% increase in the incidence of ventricular septal defects, atrial septal defects, and patent ductus arteriosus in offspring has been found to be correlated with advanced paternal age. Advanced paternal age has also been linked to increased risk of achondroplasia and Apert syndrome. Offspring born to fathers under the age of 20 show increased risk of being affected by patent ductus arteriosus, ventricular septal defects, and the tetralogy of Fallot. It is hypothesized that this may be due to environmental exposures or lifestyle choices.
Research has found that there is a correlation between advanced paternal age and risk of birth defects such as limb anomalies, syndromes involving multiple systems, and Down's syndrome. Recent studies have concluded that 5-9% of Down's syndrome cases are due to paternal effects, but these findings are controversial.
There is concrete evidence that advanced paternal age is associated with the increased likelihood that a mother will suffer from a miscarriage or that fetal death will occur.
In a newborn boy thought to have Fryns syndrome, Clark and Fenner-Gonzales (1989) found mosaicism for a tandem duplication of 1q24-q31.2. They suggested that the gene for this disorder is located in that region. However, de Jong et al. (1989), Krassikoff and Sekhon (1990), and Dean et al. (1991) found possible Fryns syndrome associated with anomalies of chromosome 15, chromosome 6, chromosome 8(human)and chromosome 22, respectively. Thus, these cases may all represent mimics of the mendelian syndrome and have no significance as to the location of the gene for the recessive disorder.
By array CGH, Slavotinek et al. (2005) screened patients with DIH and additional phenotypic anomalies consistent with Fryns syndrome for cryptic chromosomal aberrations. They identified submicroscopic chromosome deletions in 3 probands who had previously been diagnosed with Fryns syndrome and had normal karyotyping with G-banded chromosome analysis. Two female infants were found to have microdeletions involving 15q26.2 (see 142340), and 1 male infant had a deletion in band 8p23.1 (see 222400).
CHILD syndrome is not fatal unless there are problems with the internal organs. The most common causes of early death in people with the syndrome are cardiovascular malformations. However, central nervous system, skeletal, kidney, lung, and other visceral defects also contribute significantly.
CHILD syndrome occurs almost exclusively in females. Only 2 known cases have been reported in males, one having a normal 46,XY karyotype, suggesting an early postzygotic somatic mutation.
Hand-foot-genital syndrome is inherited in an autosomal dominant manner. The proportion of cases caused by de novo mutations is unknown because of the small number of individuals described. If a parent of the proband is affected, the risk to the siblings is 50%. When the parents are clinically unaffected, the risk to the sibs of a proband appears to be low. Each child of an individual with HFGS has a 50% chance of inheriting the mutation. Prenatal testing may be available through laboratories offering custom prenatal testing for families in which the disease-causing mutation has been identified in an affected family member.
The prognosis is poor; affected individuals are either stillborn or die shortly after birth. The longest survival reported in literature is of 134 days.
This syndrome is transmitted as an autosomal recessive disorder and there is a risk for recurrence of 25% in future pregnancies.
Tetra-amelia syndrome has been reported in only a few families worldwide.
According to a 2011 study by Bermejo-Sanchez, amelia – that is, the lacking of one or more limbs – occurs in roughly 1 out of every 71,000 pregnancies.
AOS is a rare genetic disorder and the annual incidence or overall prevalence of AOS is unknown. Approximately 100 individuals with this disorder have been reported in the medical literature.
Limb body wall complex (LBWC) is a rare fetal malformation of unknown origins.
Traditionally diagnosis has been based on the Van Allen et al., criteria, i.e. the presence of two out of three of the following anomalies:
1. Exencephaly or encephalocele with facial clefts
2. Thoraco and or abdominoschisis and
3. Limb defects.
LBWC occurs in approximately 0.32 in 100,000 births.
At this time, there is no known cause of Limb Body Wall Complex. However, there have been tentative links made between a diagnosis of LBWC and cocaine use. In addition, current research has shown that there may be a genetic cause for a small limited number of LBWC cases.
Limb Body Wall Complex is a lethal birth defect. There are only anecdotal stories of survivors.
The exact cause of congenital amputation is unknown and can result from a number of causes. However, most cases show that the first three months in a pregnancy are when most birth defects occur because that is when the organs of the fetus are beginning to form. One common cause is amniotic band syndrome, which occurs when the inner fetal membrane (amnion) ruptures without injury to the outer membrane (chorion). Fibrous bands from the ruptured amnion float in the amniotic fluid and can get entangled with the fetus, thus reducing blood supply to the developing limbs to such an extent that the limbs can become strangulated; the tissues die and are absorbed into the amniotic fluid. A baby with congenital amputation can be missing a portion of a limb or the entire limb, which results in the complete absence of a limb beyond a certain point where only a stump is left is known as transverse deficiency or amelia. When a specific part is missing, it is referred to as longitudinal deficiency. Finally, phocomelia occurs when only a mid-portion of a limb is missing; for example when the hands or feet are directly attached to the trunk of the body.
Amnion ruptures can be caused by:
- teratogenic drugs (e.g. thalidomide, which causes phocomelia), or environmental chemicals
- ionizing radiation (atomic weapons, radioiodine, radiation therapy)
- infections
- metabolic imbalance
- trauma
Congenital amputation is the least common reason for amputation, but it is projected that one in 2000 babies are born each year with a missing or deformed limb. During certain periods in history, an increase in congenital amputations has been documented. One example includes the thalidomide tragedy that occurred in the 1960s when pregnant mothers were given a tranquilizer that contained the harmful drug, which produced an increase in children born without limbs. Another example was the 1986 Chernobyl catastrophe in Ukraine, where the radiation exposure caused many children to be born with abnormal or missing limbs .
Studies suggest that prenatal care for mothers during their pregnancies can prevent congenital amputation. Knowing environmental and genetic risks is also important. Heavy exposure to chemicals, smoking, alcohol, poor diet, or engaging in any other teratogenic activities while pregnant can increase the risk of having a child born with a congenital amputation. Folic acid is a multivitamin that has been found to reduce birth defects.
The complete absence of an arm or leg in amelia occurs as a result of the limb formation process being either prevented or interrupted very early in the developing embryo: between 24 and 36 days following fertilization. Tetra-amelia syndrome appears to have an autosomal recessive pattern of inheritance - that is, the parents of an individual with tetra-amelia syndrome each carry one copy of the mutated gene, but do not show signs and symptoms of the condition. In a few cases, amelia may be attributed to health complications during the early stages of pregnancy, including infection, failed abortion or complications associated with removal of an IUD after pregnancy, or use of teratogenic drugs, such as thalidomide.
Diagnosis is based on physical examination including radiographs of the hands and feet and imaging studies of the kidneys, bladder, and female reproductive tract. HOXA13 is the only gene known to be associated with HFGS. Approximately 60% of mutations are polyalanine expansions. Molecular genetic testing is clinically available.
Fryns syndrome is an autosomal recessive multiple congenital anomaly syndrome that is usually lethal in the neonatal period. Fryns (1987) reviewed the syndrome.
The prognosis varies widely from case to case, depending on the severity of the symptoms. However, almost all people reported with Aicardi syndrome to date have experienced developmental delay of a significant degree, typically resulting in mild to moderate to profound intellectual disability. The age range of the individuals reported with Aicardi syndrome is from birth to the mid 40s.
There is no cure for this syndrome.