Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A multitude of conditions may lead to the development of torticollis including: muscular fibrosis, congenital spine abnormalities, or toxic or traumatic brain injury.
A rough categorization discerns between congenital torticollis and acquired torticollis.
Other categories include:
- Osseous
- Traumatic
- CNS/PNS
- Ocular
- Non-muscular soft tissue
- Spasmodic
- Drug induced
In 1983, Bringewald postulated that superior oblique myokymia resulted from vascular compression of the trochlear nerve (fourth cranial nerve), which controls the action of the superior oblique muscle in the eye. By 1998, there had been only one reported case of compression of the trochlear nerve by vessels.
More recently, magnetic resonance imaging experiments have shown that neurovascular compression at the root exit zone of the trochlear nerve can result in superior oblique myokymia.
Noncongenital muscular torticollis may result from scarring or disease of cervical vertebrae, adenitis, tonsillitis, rheumatism, enlarged cervical glands, retropharyngeal abscess, or cerebellar tumors. It may be spasmodic (clonic) or permanent (tonic). The latter type may be due to Pott's Disease (tuberculosis of the spine).
- A self-limiting spontaneously occurring form of torticollis with one or more painful neck muscles is by far the most common ('stiff neck') and will pass spontaneously in 1–4 weeks. Usually the sternocleidomastoid muscle or the trapezius muscle is involved. Sometimes draughts, colds, or unusual postures are implicated; however in many cases no clear cause is found. These episodes are commonly seen by physicians.
- Tumors of the skull base (posterior fossa tumors) can compress the nerve supply to the neck and cause torticollis, and these problems must be treated surgically.
- Infections in the posterior pharynx can irritate the nerves supplying the neck muscles and cause torticollis, and these infections may be treated with antibiotics if they are not too severe, but could require surgical debridement in intractable cases.
- Ear infections and surgical removal of the adenoids can cause an entity known as Grisel's syndrome, a subluxation of the upper cervical joints, mostly the atlantoaxial joint, due to inflammatory laxity of the ligaments caused by an infection.
- The use of certain drugs, such as antipsychotics, can cause torticollis.
- Antiemetics - Neuroleptic Class - Phenothiazines
- There are many other rare causes of torticollis. A very rare cause of acquired torticollis is fibrodysplasia ossificans progressiva (FOP), the hallmark of which is malformed great toes.
Many doctors commonly recommend a combined treatment of: a warm compress applied to the eyes (to relieve muscle tension, relax the muscles, and reduce swelling); a small dosage of antihistamine (to reduce any swelling that may be caused by an allergic reaction); increase bed rest (to allow muscles to rest); decrease exposure to computer screens, televisions, or harsh lighting (to allow muscles to rest); and monitor caffeine intake (too much caffeine can cause an adverse reaction such as eye twitching, but a controlled dose can serve as an effective treatment by increasing blood flow).
Frequent contributing factors include: too much caffeine, high levels of anxiety, fatigue, dehydration, stress, overwork, and a lack of sleep. Use of certain drugs or alcohol may also be factors.
Magnesium deficiency.
Treatment can include pharmaceutical or surgical means. The drug carbamazepine (Tegretol) has been used successfully. Other drugs used with variable success include gabapentin and, recently, memantine. Successful surgery options include superior oblique tenectomy accompanied by inferior oblique myectomy. However, "Overall, the bulk of the ophthalmic literature would agree with the viewpoint that invasive craniotomy surgical procedures should be justified only by the presence of intractable and absolutely unbearable symptoms."
Samii et al. and Scharwey and Samii described a patient who had superior oblique myokymia for 17 years. The interposition of a Teflon pad between the trochlear nerve and a compressing artery and vein at the nerve's exit from the midbrain led to a remission lasting for a follow-up of 22 months.
Fourth cranial nerve palsy also known as Trochlear nerve palsy, is a condition affecting Cranial Nerve 4 (IV), the Trochlear Nerve, which is one of the Cranial Cranial Nerves that causes weakness or paralysis to the Superior Oblique Muscle that it innervates. This condition often causes vertical or near vertical double vision as the weakened muscle prevents the eyes from moving in the same direction together.
Because the fourth cranial nerve is the thinnest and has the longest intracranial course of the cranial nerves, it is particularly vulnerable to traumatic injury.
To compensate for the double-vision resulting from the weakness of the superior oblique, patients characteristically tilt their head down and to the side opposite the affected muscle.
When present at birth, it is known as congenital fourth nerve palsy.
The long-term prognosis is uncertain, and has mostly to do with the underlying cause; i.e. autoimmune, paraneoplastic, etc. However, in recent years increased understanding of the basic mechanisms of NMT and autoimmunity has led to the development of novel treatment strategies. NMT disorders are now amenable to treatment and their prognoses are good. Many patients respond well to treatment, which usually provide significant relief of symptoms. Some cases of spontaneous remission have been noted, including Isaac's original two patients when followed up 14 years later.
While NMT symptoms may fluctuate, they generally don't deteriorate into anything more serious, and with the correct treatment the symptoms are manageable.
A very small proportion of cases with NMT may develop central nervous system findings in their clinical course, causing a disorder called Morvan's syndrome, and they may also have antibodies against potassium channels in their serum samples. Sleep disorder is only one of a variety of clinical conditions observed in Morvan's syndrome cases ranging from confusion and memory loss to hallucinations and delusions. However, this is a separate disorder.
Some studies have linked NMT with certain types of cancers, mostly lung and thymus, suggesting that NMT may be paraneoplastic in some cases. In these cases, the underlying cancer will determine prognosis. However, most examples of NMT are autoimmune and not associated with cancer.
The origins of the vast majority of congenital oculomotor palsies are unknown, or idiopathic to use the medical term. There is some evidence of a familial tendency to the condition, particularly to a partial palsy involving the superior division of the nerve with an autosomal recessive inheritance. The condition can also result from aplasia or hypoplasia of one or more of the muscles supplied by the oculomotor nerve. It can also occur as a consequence of severe birth trauma.
The three causes of NMT are:
1. Acquired
2. Paraneoplastic
3. Hereditary
The acquired form is the most common, accounting for up to 80 percent of all cases and is suspected to be autoimmune-mediated, which is usually caused by antibodies against the neuromuscular junction.
The exact cause is unknown. However, autoreactive antibodies can be detected in a variety of peripheral (e.g. myasthenia gravis, Lambert-Eaton myasthenic syndrome) and central nervous system (e.g. paraneoplastic cerebellar degeneration, paraneoplastic limbic encephalitis) disorders. Their causative role has been established in some of these diseases but not all. Neuromyotonia is considered to be one of these with accumulating evidence for autoimmune origin over the last few years. Autoimmune neuromyotonia is typically caused by antibodies that bind to potassium channels on the motor nerve resulting in continuous/hyper-excitability. Onset is typically seen between the ages of 15–60, with most experiencing symptoms before the age of 40. Some neuromyotonia cases do not only improve after plasma exchange but they may also have antibodies in their serum samples against voltage-gated potassium channels. Moreover, these antibodies have been demonstrated to reduce potassium channel function in neuronal cell lines.
The cause of congenital fourth nerve palsy is unclear in most cases. It may be neurogenic in origin, due to a dysgenesis of the CN IV nucleus or nerve, but a clinically similar palsy may result from absence or mechanical dysfunction (e.g., abnormal laxity) of the superior oblique tendon. Usually unilateral, congenital fourth nerve palsies can also occur bilaterally. Bilateral congenital fourth nerve palsy may be unmasked only after corrective surgery of one eye for what was thought to be a unilateral palsy.
Oculomotor palsy can arise as a result of a number of different conditions. Non traumatic pupil-sparing oculomotor nerve palsies are often referred to as a 'medical third' with those affecting the pupil being known as a 'surgical third'.
Ophthalmoparesis can result from disorders of various parts of the eye and nervous system:
- Infection around the eye. Ophthalmoplegia is an important finding in orbital cellulitis.
- The orbit of the eye, including mechanical restrictions of eye movement, as in Graves disease.
- The muscle, as in progressive external ophthalmoplegia or Kearns-Sayre syndrome.
- The neuromuscular junction, as in myasthenia gravis.
- The relevant cranial nerves (specifically the oculomotor, trochlear, and abducens), as in cavernous sinus syndrome or raised intracranial pressure.
- The brainstem nuclei of these nerves, as in certain patterns of brainstem stroke such as Foville's syndrome.
- White matter tracts connecting these nuclei, as in internuclear ophthalmoplegia, an occasional finding in multiple sclerosis.
- Dorsal midbrain structures, as in Parinaud's syndrome.
- Certain parts of the cerebral cortex (including the frontal eye fields), as in stroke.
- Toxic envenomation by mambas, taipans, and kraits.
Thiamine deficiency can cause ophthalmoparesis in susceptible persons; this is part of the syndrome called Wernicke encephalopathy. The causal pathway by which this occurs is unknown. Intoxication with certain substances, such as phenytoin, can also cause ophthalmoparesis.
In Brown's original series there was a 3:2 predominance of women to men and nearly twice as many cases involved the right eye as the left. 10% of cases showed bilaterality. Familial occurrence of Brown's syndrome has been reported.
- "For acquired fourth nerve palsy, see fourth nerve palsy"
Congenital fourth nerve palsy is a condition present at birth characterized by a vertical misalignment of the eyes due to a weakness or paralysis of the superior oblique muscle.
Other names for fourth nerve palsy include superior oblique palsy and trochlear nerve palsy.
When looking to the right/left the nerve/muscle isn't strong enough or is too long and the eye drifts up.
Treatment and prognosis depend on the underlying condition. For example, in thiamine deficiency, treatment would be the immediate administration of vitamin B1.
Brown's syndrome is a rare form of strabismus characterized by limited elevation of the affected eye. The disorder may be congenital (existing at or before birth), or acquired. Brown syndrome is caused by a malfunction of the Superior oblique muscle, causing the eye to have difficulty moving up, particularly during adduction (when eye turns towards the nose). Harold W. Brown first described the disorder in 1950 and initially named it the "superior oblique tendon sheath syndrome".
Trochleitis is diagnosed based on three criteria: 1) demonstration of inflammation of superior oblique tendon/ trochlea region, 2) periorbital pain and tenderness to palpation in the area of the sore trochlea, and 3) worsening of pain on attempted vertical eye movement, particularly with adduction of the eye. It is important to identify trochleitis because it is a treatable condition and the patient can benefit much from pain relief. Treatment consists of a single injection of corticosteroids to the affected peritrochlear region. A specific "cocktail" consisting of 0.5 ml of depomedrol (80 mg/ml) and 0.5 ml of 2% lidocaine can be injected into the trochlea; immediate relief due to the effects of the local anesthetic indicates successful placement. However, great care must be taken as the injection is in the region of several arteries, veins and nerves. The needle should not be too small (so as not to penetrate tiny structures), the surgeon should draw back on the syringe (to ensure not have pierced a vessel), the lidocaine should not contain epinephrine (which could cause vasospasm), and the pressure of the injection must always be controlled. Only a limited number of injections can be made as they would otherwise lead to muscle atrophy. Diagnosis can be confirmed by response to this treatment; pain and swelling are expected to disappear in 48–72 hours. Some patients experience recurrence of trochleitis.
Antibodies against voltage-gated potassium channels (VGKC), which are detectable in about 40% of patients with acquired neuromytonia, have been implicated in Morvan’s pathophysiology. Raised serum levels of antibodies to VGKCs have been reported in three patients with Morvan’s Syndrome. Binding of serum from a patient with Morvan’s Syndrome to the hippocampus in a similar pattern of antibodies to known VGKC suggest that these antibodies can also cause CNS dysfunction. Additional antibodies against neuromuscular junction channels and receptors have also been described. Experimental evidence exists that these anti-VGKC antibodies cause nerve hyperexcitability by suppression of voltage gated K+ outward currents, whereas other, yet undefined humoral factors have been implicated in anti-VGKC antibody negative neuromyotonia. It is believed that antibodies to the Shaker-type K+ channels (the Kv1 family) are the type of potassium channel most strongly associated with acquired neuromyotonia and Morvan’s Syndrome.
Whether VGKC antibodies play a pathogenic role in the encephalopathy as they do in the peripheral nervous system is as yet unclear. It has been suggested that the VGKC antibodies may cross the blood–brain barrier and act centrally, binding predominantly to thalamic and striatal neurons causing encephalopathic and autonomic features.
Episodic ataxia (EA) is an autosomal dominant disorder characterized by sporadic bouts of ataxia (severe discoordination) with or without myokymia (continuous muscle movement). There are seven types recognised but the majority are due to two recognized entities. Ataxia can be provoked by stress, startle, or heavy exertion such as exercise. Symptoms can first appear in infancy. There are at least 6 loci for EA, of which 4 are known genes. Some patients with EA also have migraine or progressive cerebellar degenerative disorders, symptomatic of either familial hemiplegic migraine or spinocerebellar ataxia. Some patients respond to acetazolamide though others do not.
In one case, a patient was diagnosed with both Morvan's syndrome and pulmonary hyalinizing granulomas (PHG). PHG are rare fibrosing lesions of the lung, which have central whorled deposits of lamellar collagen. How these two diseases relate to one another is still unclear.
Thymoma, prostate adenoma, and in situ carcinoma of the sigmoid colon have also been found in patients with Morvan’s Syndrome.
Depending on subtype, many patients find that acetazolamide therapy is useful in preventing attacks. In some cases, persistent attacks result in tendon shortening, for which surgery is required.
A side strain is a muscle strain caused by tearing of the transversalis fascia or the internal oblique muscle. When this occurs, stretching the muscle will be severely painful, making it difficult to move the arm, and the strain may later be marked by swelling or bruising.
The strain usually occurs due to the internal oblique muscle contracting suddenly from a stretched position. It may happen suddenly, or over time from regular repetitive activity. It is common in cricket players, and occurs on the opposite side of the arm that is used for bowling. The injury has also been reported in rowing, baseball and ice hockey. The preferred treatment for a side strain is regular rest and inactivity on the affected muscle. With appropriate rest, regular activity on the muscle can occur between 4 and 6 weeks, though it may take longer.
The cause of trochleitis is often unknown (idiopathic trochleitis), but it has been known to occur in patients with rheumatological diseases such as systemic lupus erythematosus, rheumatoid arthritis, enteropathic arthropathy, and psoriasis. In his study, Tychsen and his group evaluated trochleitis patients with echography and CT scan to demonstrate swelling and inflammation. Imaging studies showed inflammation of superior oblique tendon/ trochlear pulley. It was unclear whether the inflammation involved the trochlea itself, or the tissues surrounding the trochlea.
The Trendelenburg gait pattern (or gluteus medius lurch) is an abnormal gait (as with walking) caused by weakness of the abductor muscles of the lower limb, gluteus medius and gluteus minimus. People with a lesion of superior gluteal nerve have weakness of abducting the thigh at the hip.
This type of gait may also be seen in L5 radiculopathy and after poliomyelitis, but is then usually seen in combination with foot drop.
During the stance phase, the weakened abductor muscles allow the pelvis to tilt down on the opposite side. To compensate, the trunk lurches to the weakened side to attempt to maintain a level pelvis throughout the gait cycle. The pelvis sags on the opposite side of the lesioned superior gluteal nerve.
This gait is precipitated by strain to the gluteus maximus and gluteus minimus. Sufferers frequently complain that an overly strenuous session at the gym, particularly with glute-isolating equipment, result in this awkward gait, or worse.
This gait may be caused by cleidocranial dysostosis.
Biofeedback and physical therapy have been used in treatment.
When the hip abductor muscles (gluteus medius and minimus) are weak, the stabilizing effect of these muscles during gait is lost.
When standing on the right leg, if the left hip drops, it's a positive right Trendelenburg sign (the contralateral side drops because the ipsilateral hip abductors do not stabilize the pelvis to prevent the droop).
"When the patient walks, if he swings his body to the right to compensate for left hip drop, he will present with a compensated Trendelenburg gait; the patient exhibits an excessive lateral lean in which the thorax is thrust laterally to keep the center of gravity over the stance leg."