Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Laryngotracheal stenosis refers to abnormal narrowing of the central air passageways. This can occur at the level of the larynx, trachea, carina or main bronchi.
In a small number of patients narrowing may be present in more than one anatomical location.
Subglottic stenosis is a congenital or acquired narrowing of the subglottic airway. Although it is relatively rare, it is the third most common congenital airway problem (after laryngomalacia and vocal cord paralysis). Subglottic stenosis can present as a life-threatening airway emergency. It is imperative that the otolaryngologist be an expert at dealing with the diagnosis and management of this disorder. Subglottic stenosis can affect both children and adults.
Subglottic stenosis can be of three forms, namely congenital subglottic stenosis, idiopathic subglottic stenosis (ISS) and acquired subglottic stenosis. As the name suggests, congenital subglottic stenosis is a birth defect. Idiopathic subglottic stenosis is a narrowing of the airway due to an unknown cause. Acquired subglottic stenosis generally follows as an after-effect of airway intubation, and in extremely rare cases as a result of gastroesophageal reflux disease (GERD).
Subglottic stenosis is graded according to the Cotton-Meyer classification system from one to four based on the severity of the blockage.
Grade 1 – <50% obstruction
Grade 2 – 51–70% obstruction
Grade 3 – 71–99% obstruction
Grade 4 – no detectable lumen
Treatments to alleviate the symptoms of subglottic stenosis includes a daily dose of steroids such as prednisone, which reduces the inflammation of the area for better breathing. Other medications such as Methotrexate is also being tested by patients but results are pending.
Laryngotracheal stenosis is an umbrella term for a wide and heterogeneous group of very rare conditions. The population incidence of adult post-intubation laryngotracheal stenosis which is the commonest benign sub-type of this condition is approximately 1 in 200,000 adults per year. The main causes of adult laryngotracheal stenosis are:
The resulting syndrome depends on the structure affected.
Examples of vascular stenotic lesions include:
- Intermittent claudication (peripheral artery stenosis)
- Angina (coronary artery stenosis)
- Carotid artery stenosis which predispose to (strokes and transient ischaemic episodes)
- Renal artery stenosis
The types of stenoses in heart valves are:
- Pulmonary valve stenosis, which is the thickening of the pulmonary valve, therefore causing narrowing
- Mitral valve stenosis, which is the thickening of the mitral valve (of the left heart), therefore causing narrowing
- Tricuspid valve stenosis, which is the thickening of the tricuspid valve (of the right heart), therefore causing narrowing
- Aortic valve stenosis, which is the thickening of the aortic valve, therefore causing narrowing
Stenoses/strictures of other bodily structures/organs include:
- Pyloric stenosis (gastric outflow obstruction)
- Lumbar, cervical or thoracic spinal stenosis
- Subglottic stenosis (SGS)
- Tracheal stenosis
- Obstructive jaundice (biliary tract stenosis)
- Bowel obstruction
- Phimosis
- Non-communicating hydrocephalus
- Stenosing tenosynovitis
- Atherosclerosis
- Esophageal stricture
- Achalasia
- Prinzmetal angina
- Vaginal stenosis
Pyloric stenosis seems to be multifactorial, with some genetic and some environmental components. It is four times more likely to occur in males, and is also more common in the first born. Rarely, infantile pyloric stenosis can occur as an autosomal dominant condition.
It is uncertain whether it is a congenital anatomic narrowing or a functional hypertrophy of the pyloric sphincter muscle.
Males are more commonly affected than females, with firstborn males affected about four times as often, and there is a genetic predisposition for the disease. It is commonly associated with people of Scandinavian ancestry, and has multifactorial inheritance patterns. Pyloric stenosis is more common in Caucasians than Hispanics, Blacks, or Asians. The incidence is 2.4 per 1000 live births in Caucasians, 1.8 in Hispanics, 0.7 in Blacks, and 0.6 in Asians. It is also less common amongst children of mixed race parents. Caucasian male babies with blood type B or O are more likely than other types to be affected.
Infants exposed to erythromycin are at increased risk for developing hypertrophic pyloric stenosis, especially when the drug is taken around two weeks of life and possibly in late pregnancy and through breastmilk in the first two weeks of life.
A stenosis is an abnormal narrowing in a blood vessel or other tubular organ or structure. It is also sometimes called a stricture (as in urethral stricture).
Stricture as a term is usually used when narrowing is caused by contraction of smooth muscle (e.g., achalasia, prinzmetal angina); stenosis is usually used when narrowing is caused by lesion that reduces the space of lumen (e.g., atherosclerosis). The term coarctation is another synonym, but is commonly used only in the context of aortic coarctation.
Restenosis is the recurrence of stenosis after a procedure. The term is from Ancient Greek στενός, "narrow".
Frisch & Simonsen (2016) carried out a very large scale study in Denmark, which compared the incidence of meatal stenosis in Muslim males (mostly circumcised) with the incidence of meatal stenosis in ethnic Danish males (mostly non-circumcised). The risk of meatal stenosis in circumcised males was found to be as much 3.7 times higher than in the intact, non-circumcised males.
The epidemiology of pulmonary valve stenosis can be summed up by the congenital aspect which is the majority of cases, in broad terms PVS is rare in the general population.
If untreated, severe symptomatic aortic stenosis carries a poor prognosis with a 2-year mortality rate of 50-60% and a 3-year survival rate of less than 30%. Prognosis after aortic valve replacement for people who are younger than 65 is about five years less than that of the general population; for people older than 65 it is about the same.
Numerous studies over a long period of time clearly indicate that male circumcision contributes to the development of urethral stricture. Among circumcised males, reported incidence of meatal stricture varies. Griffiths "et al". (1985) reported an incidence of 2.8 percent. Sörensen & Sörensen (1988) reported 0 percent. Cathcart "et al". (2006) reported an incidence of 0.55 percent. Yegane "et al". (2006) reported an incidence of 0.9 percent. Van Howe (2006) reported an incidence of 7.29 percent. In Van Howe's study, all cases of meatal stenosis were among circumcised boys. Simforoosh "et al". (2010) reported an incidence of 0.55 percent. According to Emedicine (2016), the incidence of meatal stenosis runs from 9 to 20 percent. Frisch & Simonsen (2016) placed the incidence at 5 to 20 percent of circumcised boys.
In peripheral procedures, rates are still high. A 2003 study of selective and systematic stenting for limb-threatening ischemia reported restenosis rates at 1 year follow-up in 32.3% of selective stenting patients and 34.7% of systematic stenting patients.
The 2006 SIROCCO trial compared the sirolimus drug-eluting stent with a bare nitinol stent for atherosclerotic lesions of the superficial femoral artery, reporting restenosis at 2 year follow-up was 22.9% and 21.1%, respectively.
A 2009 study compared bare nitinol stents with percutaneous transluminal angioplasty (PTA) in superficial femoral artery disease. At 1 year follow-up, restenosis was reported in 34.4% of stented patients versus 61.1% of PTA patients.
An extracranial shunt is essentially a sturdy tube with a catheter on one end to drain the third ventricle. The shunt also has a valve which serves to maintain one-way flow of the CSF and regulates the flow rate. The end with the catheter is placed in the third ventricle to drain the excess CSF and the other end is placed in the peritoneal cavity or atrium of the heart (making it a ventriculoperitoneal or ventriculoatrial shunt, respectively). The excess CSF which is diverted to a cavity is then reabsorbed by the surrounding tissue where it is drained to.
The procedure to insert this device is a technically straightforward endoscopic surgery with a low mortality rate (essentially 0% mortality since the 1970s). If the shunt has an adjustable valve the current method of setting the valve pressure is to choose one setting, observe the patient to see if CSF flow improves and the symptoms lessen over time, and adjust the pressure setting as needed if improvement isn't seen. For example, if there is not enough CSF flow, another surgery is performed to lower the valve pressure so that less force needs to be applied to open the valve and thereby drain more CSF.
This treatment method has several possible problems with it (with a 50% failure rate in 2 years), and unfortunately shunt malfunctions and associated complications cause a death rate of 1.2% per year. Problems which can necessitate a secondary surgery to fix them include: mechanical failure, incorrect catheter size, inappropriate valve drainage pressure, and infection.
- Inappropriate valve pressure can lead to "overdraining" or "underdraining", both of which should be treated by adjusting the valve pressure. Overdraining occurs when the valve pressure is too low and CSF flows out of the third ventricle too quickly. The ventricle then collapses and blood vessles can be torn in the process. This in turn can lead to headache, hemorrhage, or slit ventricle syndrome. Underdraining occurs when the valve pressure is too high and CSF flows out too slowly. This results in symptoms of hydrocephalus as the CSF is still collecting rather than being absorbed or diverted.
- Risk of infection is due to the fact that a foreign object is being introduced into the body. Infection can have symptoms of fever and soreness of the neck and shoulders.
A genetic disorder called “Brickers-Adams-Edwards syndrome” or “X-linked hydrocephalus” has been discovered that leads to aqueductal stenosis. This disease is transmitted from mother to son. This disorder is caused by a point mutation in the gene for neural cell adhesion. Most males born with this have severe hydrocephalus, adducted thumbs, spastic motions, and intellectual problems. Females with this defect may have adducted thumbs or subnormal intelligence.
Bacterial meningitis can also result in gliotic blockage of the aqueduct. In utero infection or infection during infancy could both result in glial cell build up to make an obstruction.
The treatment of choice is percutaneous balloon valvuloplasty and is done when a resting peak gradient is seen to be >60mm Hg or a mean >40mm Hg is observed.
Approximately 2% of people over the age of 65, 3% of people over age 75, and 4% percent of people over age 85 have aortic valve stenosis. The prevalence is increasing with the aging population in North America and Europe.
Risk factors known to influence disease progression of AS include lifestyle habits similar to those of coronary artery disease such as hypertension, advanced age, being male, hyperlipidemia, diabetes mellitus, cigarette smoking, metabolic syndrome, and end-stage kidney disease.
Stenosis of the pulmonary artery is a condition where the pulmonary artery is subject to an abnormal constriction (or stenosis). Peripheral pulmonary artery stenosis may occur as an isolated event or in association with Alagille syndrome, Berardinelli-Seip congenital lipodystrophy type 1, Costello syndrome, Keutel syndrome, nasodigitoacoustic syndrome (Keipert syndrome), Noonan syndrome or Williams syndrome.
It should not be confused with a pulmonary valve stenosis, which is in the heart, but can have similar hemodynamic effects. Both stenosis of the pulmonary artery and pulmonary valve stenosis are causes of pulmonic stenosis.
In some cases it is treated with surgery.
In cardiac procedures, balloon angioplasty has been associated with a high incidence of restenosis, with rates ranging from 25% to 50%, and the majority of these patients need further angioplasty within 6 months.
A 2010 study in India comparing coronary drug-eluting stents (DES) with coronary bare-metal stents (BMS) reported that restenosis developed in 23.1% of DES patients vs 48.8% in BMS patients, and female sex was found to be a statistically significant risk factor for developing restenosis.
In terms of treatment for pulmonary valve stenosis, valve replacement or surgical repair (depending upon whether the stenosis is in the valve or vessel) may be indicated. If the valve stenosis is of congenital origin, balloon valvuloplasty is another option, depending on the case.
Valves made from animal or human tissue (are used for valve replacement), in adults metal valves can be used.
A left ventricular outflow tract obstruction (LVOTO) may be due to a defect in the aortic valve, or a defect located at the subvalvar or supravalvar level.
- Aortic valve stenosis
- Supravalvar aortic stenosis
- Coarctation of the aorta
- Hypoplastic left heart syndrome
A right ventricular outflow tract obstruction (RVOTO) may be due to a defect in the pulmonic valve, the supravalvar region, the infundibulum, or the pulmonary artery.
- Pulmonary atresia
- Pulmonary valve stenosis
- Hypoplastic right heart syndrome
- Tetralogy of Fallot
When pulmonic stenosis (PS) is present, resistance to blood flow causes right ventricular hypertrophy. If right ventricular failure develops, right atrial pressure will increase, and this may result in a persistent opening of the foramen ovale, shunting of unoxygenated blood from the right atrium into the left atrium, and systemic cyanosis. If pulmonary stenosis is severe, congestive heart failure occurs, and systemic venous engorgement will be noted. An associated defect such as a patent ductus arteriosus partially compensates for the obstruction by shunting blood from the left ventricle to the aorta then back to the pulmonary artery (as a result of the higher pressure in the left ventricle) and back into the lungs.
The following table includes the main types of valvular stenosis and regurgitation. Major types of valvular heart disease not included in the table include mitral valve prolapse, rheumatic heart disease and endocarditis.
Supravalvular aortic stenosis is a congenital obstructive narrowing of the aorta just above the aortic valve. It is often associated with other cardiovascular anomalies and is one of the characteristic findings of Williams syndrome. The diagnosis can be made by echocardiography or MRI.
Supravalvular aortic stenosis is associated with genetic damage at the Elastin gene locus on chromosome 7q11.23. Fluorescent in situ hybridisation techniques have revealed that 96% of patients with Williams syndrome, where supravalvular aortic stenosis is characteristic, have a hemizygous deletion of the Elastin gene. Further studies have shown that patients with less extensive deletions featuring the Elastin gene also tend to develop supravalvular aortic stenosis