Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Lupus can develop in any age but most commonly in ages 15 to 44 with varying results. Typically, the manifestation of the disease tends to be more acute in those affected who are of younger age. Women are more likely to get it than men. Patients with juvenile onset Lupus in particular, are vulnerable to mucocutaneous manifestations of the disease (alopecia, skin rash, and ulceration of the mucus membranes) more so than any other age group. However, patients with late onset Lupus have a much higher mortality rate. Nearly 50% of those with late onset Lupus die of their affliction. Women who are of childbearing age are also particularly at risk.
SLE, like many autoimmune diseases, affects females more frequently than males, at a rate of about 9 to 1. The X chromosome carries immunological related genes, which can mutate and contribute to the onset of SLE. The Y chromosome has no identified mutations associated with autoimmune disease.
Hormonal mechanisms could explain the increased incidence of SLE in females. The onset of SLE could be attributed to the elevated hydroxylation of estrogen and the abnormally decreased levels of androgens in females. In addition, differences in GnRH signalling have also shown to contribute to the onset of SLE. While females are more likely to relapse than males, the intensity of these relapses is the same for both sexes.
In addition to hormonal mechanisms, specific genetic influences found on the X chromosome may also contribute to the development of SLE. Studies indicate that the X chromosome can determine the levels of sex hormones. A study has shown an association between Klinefelter syndrome and SLE. XXY males with SLE have an abnormal X–Y translocation resulting in the partial triplication of the PAR1 gene region.
There are assertions that race affects the rate of SLE. However, a 2010 review of studies which correlate race and SLE identified several sources of systematic and methodological error, indicating that the connection between race and SLE may be spurious. For example, studies show that social support is a modulating factor which buffers against SLE-related damage and maintains physiological functionality. Studies have not been conducted to determine whether people of different racial backgrounds receive differing levels of social support. If there is a difference, this could act as a confounding variable in studies correlating race and SLE. Another caveat to note when examining studies about SLE is that symptoms are often self-reported. This process introduces additional sources of methodological error. Studies have shown that self-reported data is affected by more than just the patients experience with the disease- social support, the level of helplessness, and abnormal illness-related behaviors also factor into a self-assessment. Additionally, other factors like the degree of social support that a person receives, socioeconomic status, health insurance, and access to care can contribute to an individual’s disease progression. Racial differences in lupus progression have not been found in studies that control for the socioeconomic status [SES] of participants. Studies that control for the SES of its participants have found that non-white people have more abrupt disease onset compared to white people and that their disease progresses more quickly. Non-white patients often report more hematological, serosal, neurological, and renal symptoms. However, the severity of symptoms and mortality are both similar in white and non-white patients. Studies that report different rates of disease progression in late-stage SLE are most likely reflecting differences in socioeconomic status and the corresponding access to care. The people who receive medical care have often accrued less disease-related damage and are less likely to be below the poverty line. Additional studies have found that education, marital status, occupation, and income create a social context which contributes to disease progression.
Substantial data have been found to indicate that certain ethnic populations could be more at risk for Lupus Erythematosus, and have a better or worse prognosis. Asian, African, and Native Americans are more likely to get Lupus than Caucasians. Caucasians seem to generally have a more mild manifestation of the disease. Their survival rates after five years were typically around 94%-96%, while patients of African, and some Asian ethnicities had survival rates closer to 79%-92%. The only documented ethnicity that had a higher survival rate than Caucasians were Koreans, who had survival rates nearer to 98%. Among Caucasians, the most common causes of death were complications involving the cardiovascular system, the respiratory system and problems with malignancies. Atherosclerotic cardiovascular disease is more prevalent in African American Lupus patients compared to Caucasians with Lupus.
SLE causes an increased rate of fetal death "in utero" and spontaneous abortion (miscarriage). The overall live-birth rate in SLE patient has been estimated to be 72%. Pregnancy outcome appears to be worse in SLE patients whose disease flares up during pregnancy.
Miscarriages in the first trimester appear either to have no known cause or to be associated with signs of active SLE. Later losses appear to occur primarily due to the antiphospholipid syndrome, in spite of treatment with heparin and aspirin. All women with lupus, even those without previous history of miscarriage, are recommended to be screened for antiphospholipid antibodies, both the lupus anticoagulant (the RVVT and sensitive PTT are the best screening battery) and anticardiolipin antibodies.
Neonatal lupus is the occurrence of SLE symptoms in an infant born from a mother with SLE, most commonly presenting with a rash resembling discoid lupus erythematosus, and sometimes with systemic abnormalities such as heart block or hepatosplenomegaly. Neonatal lupus is usually benign and self-limited. Still, identification of mothers at highest risk for complications allows for prompt treatment before or after birth. In addition, SLE can flare up during pregnancy, and proper treatment can maintain the health of the mother for longer.
The processes that lead to drug-induced lupus erythematosus are not entirely understood. The exact processes that occur are not known even after 50 years since its discovery, but many studies present theories on the mechanisms of DIL.
A predisposing factor to developing DIL is N-acetylation speed, or the rate at which the body can metabolize the drug. This is greatly decreased in patients with a genetic deficiency of the enzyme N-acetyltransferase. A study showed that 29 of 30 patients with DIL were slow acetylators. In addition, these patients had more hydralazine metabolites in their urine than fast acetylators. These metabolites (byproducts of the interactions between the drug and constituents in the body) of hydralazine are said to have been created when white blood cells have been activated, meaning they are stimulated to produce a respiratory burst. Respiratory burst in white blood cells induces an increased production of free radicals and oxidants such as hydrogen peroxide. These oxidants have been found to react with hydralazine to produce a reactive species that is able to bond to protein. Monocytes, one type of white blood cell, detect the antigen and relay the recognition to T helper cells, creating antinuclear antibodies leading to an immune response. Further studies on the interactions between oxidants and hydralazine are necessary to understand the processes involved in DIL.
Of the drugs that cause DIL, hydralazine has been found to cause a higher incidence. Hydralazine is a medication used to treat high blood pressure. Approximately 5% of the patients who have taken hydralazine over long periods of time and in high doses have shown DIL-like symptoms. Many of the other drugs have a low to very low risk to develop DIL. The following table shows the risk of development of DIL of some of these drugs on a very to high scale.
- High risk:
- Procainamide (antiarrhythmic)
- Hydralazine (antihypertensive)
Antinuclear antibodies are usually positive in drug induced Lupus. Anti-Neutrophil Cytoplasmic antibodies (ANCA) can also be positive in association with certain drugs. Furthermore, Anti-Histone antibodies can also be positive in drug induced lupus.
Anti-Histone antibodies are positive in up to 95% of patients with drug induced lupus. DIThe most common medications associated with drug induced lupus are hydralazine, procainamide, isoniazid, methyldopa, chlorpromazine, quinidine, and minocycline.
The prognosis of mixed connective tissue disease is in one third of cases worse than that of systemic lupus erythematosus (SLE). In spite of prednisone treatment, this disease is progressive and may in many cases evolve into a progressive systemic sclerosis (PSS), also referred to as diffuse cutaneous systemic scleroderma (dcSSc) which has a poor outcome. In some cases though the disease is mild and may only need aspirin as a treatment and may go into remission where no Anti-U1-RNP antibodies are detected, but that is rare or within 30% of cases. Most deaths from MCTD are due to heart failure caused by pulmonary arterial hypertension (PAH).
Vasculitis secondary to connective tissue disorders. Usually secondary to systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), relapsing polychondritis, Behçet's disease, and other connective tissue disorders.
Vasculitis secondary to viral infection. Usually due to hepatitis B and C, HIV, cytomegalovirus, Epstein-Barr virus, and Parvo B19 virus.
These are also referred to as systemic autoimmune diseases. The autoimmune CTDs may have both genetic and environmental causes. Genetic factors may create a predisposition towards developing these autoimmune diseases. They are characterized as a group by the presence of spontaneous overactivity of the immune system that results in the production of extra antibodies into the circulation. The classic collagen vascular diseases have a "classic" presentation with typical findings that doctors can recognize during an examination. Each also has "classic" blood test abnormalities and abnormal antibody patterns. However, each of these diseases can evolve slowly or rapidly from very subtle abnormalities before demonstrating the classic features that help in the diagnosis. The classic collagen vascular diseases include:
- Systemic lupus erythematosus (SLE) – An inflammation of the connective tissues, SLE can afflict every organ system. It is up to nine times more common in women than men and strikes black women three times as often as white women. The condition is aggravated by sunlight.
- Rheumatoid arthritis – Rheumatoid arthritis is a systemic disorder in which immune cells attack and inflame the membrane around joints. It also can affect the heart, lungs, and eyes. Of the estimated 2.1 million Americans with rheumatoid arthritis, approximately 1.5 million (71 percent) are women.
- Scleroderma – an activation of immune cells that produces scar tissue in the skin, internal organs, and small blood vessels. It affects women three times more often than men overall, but increases to a rate 15 times greater for women during childbearing years, and appears to be more common among black women.
- Sjögren's syndrome – also called Sjögren's disease, is a chronic, slowly progressing inability to secrete saliva and tears. It can occur alone or with rheumatoid arthritis, scleroderma, or systemic lupus erythematosus. Nine out of 10 cases occur in women, most often at or around mid-life.
- Mixed connective tissue disease – Mixed connective-tissue disease (MCTD) is a disorder in which features of various connective-tissue diseases (CTDs) such as systemic lupus erythematosus (SLE); systemic sclerosis (SSc); dermatomyositis (DM); polymyositis (PM); anti-synthetase syndrome; and, occasionally, Sjögren syndrome can coexist and overlap. The course of the disease is chronic and usually milder than other CTDs. In most cases, MCTD is considered an intermediate stage of a disease that eventually becomes either SLE or Scleroderma.
- Undifferentiated connective tissue disease (UCTD) is a disease in which the body mistakenly attacks its own tissues. It is diagnosed when there is evidence of an existing autoimmune condition which does not meet the criteria for any specific autoimmune disease, such as systemic lupus erythematosus or scleroderma. Latent lupus and incomplete lupus are alternative terms that have been used to describe this condition.
- Psoriatic arthritis is also a collagen vascular disease.
Most patients will maintain a diagnosis of undifferentiated connective tissue disease. However, about one third of UCTD patients will differentiate to a specific autoimmune disease, like rheumatoid arthritis or systemic sclerosis. About 12 percent of patients will go into remission.
Severe vitamin D deficiency has been associated with the progression of UCTD into defined connective tissue diseases. The presence of the autoantibodies anti-dsDNA, anti-Sm, and anti-cardiolipin has been shown to correlate with the development of systemic lupus erythematosus, specifically.
Chilblain lupus erythematosus (also known as "chilblain lupus erythematosus of Hutchinson") is a chronic, unremitting form of lupus erythematosus with the fingertips, rims of ears, calves, and heels affected, especially in women.
An overlap syndrome is an autoimmune disease of connective tissue in which a person presents with symptoms of two or more diseases.
Examples of overlap syndromes include mixed connective tissue disease and scleromyositis. Diagnosis depends on which diseases the patient shows symptoms and has positive antibodies for in their lab serology.
In overlap syndrome, features of the following diseases are found (most common listed):
- Systemic lupus erythematosus (SLE),
- Systemic sclerosis,
- Polymyositis,
- Dermatomyositis,
- Rheumatoid arthritis (RA)
- Sjögren's syndrome
- Eosinophilic granulomatosis with polyangiitis (EGPA)
- Autoimmune thyroiditis
- Antiphospholipid antibody syndrome
The treatment of overlap syndrome is mainly based on the use of corticosteroids and immunosuppressants. Biologic drugs, i.e. anti-TNFα or anti-CD20 monoclonal antibodies, have been recently introduced as alternative treatments in refractory cases. There are some concerns with the use of anti-TNF agents in patients with systemic autoimmune diseases due to the risk of triggering disease exacerbations.
Neonatal lupus erythematosus is the occurrence of systemic lupus erythematosus (SLE) symptoms in an infant born from a mother with SLE, most commonly presenting with a rash resembling discoid lupus erythematosus, and sometimes with systemic abnormalities such as complete heart block or hepatosplenomegaly.
The infants have no skin lesions at birth, but develop them during the first weeks of life. Neonatal lupus is usually benign and self-limited.
It is associated with mothers who carry the Ro/SSA antibodies.
The cause of lupus nephritis, a genetic predisposition, plays role in lupus nephritis. Multiple genes, many of which are not yet identified, mediate this genetic predisposition.
The immune system protects the human body from infection, with immune system problems it cannot distinguish between harmful and healthy substances. Lupus nephritis affects approximately 3 out of 10,000 people.
Lupus erythematosus panniculitis (also known as "Lupus erythematosus profundus", "Lupus panniculitis", "Lupus profundus", and "Subcutaneous lupus erythematosus") presents with subcutaneous nodules that are commonly firm, sharply defined and nontender.
A connective tissue disease is any disease that has the connective tissues of the body as a target of pathology. Connective tissue is any type of biological tissue with an extensive extracellular matrix that supports, binds together, and protects organs. These tissues form a framework, or matrix, for the body, and are composed of two major structural protein molecules: collagen and elastin. There are many different types of collagen protein in each of the body's tissues. Elastin has the capability of stretching and returning to its original length—like a spring or rubber band. Elastin is the major component of ligaments (tissues that attach bone to bone) and skin. In patients with connective tissue disease, it is common for collagen and elastin to become injured by inflammation (ICT). Many connective tissue diseases feature abnormal immune system activity with inflammation in tissues as a result of an immune system that is directed against one's own body tissues (autoimmunity).
Diseases in which inflammation or weakness of collagen tends to occur are also referred to as collagen diseases. Collagen vascular diseases can be (but are not necessarily) associated with collagen and blood vessel abnormalities and that are autoimmune in nature. See also vasculitis.
Connective tissue diseases can have strong or weak inheritance risks, and can also be caused by environmental factors.
Undifferentiated connective tissue disease (UCTD) is a disease in which the body mistakenly attacks its own tissues. It is diagnosed when there is evidence of an existing autoimmune condition which does not meet the criteria for any specific autoimmune disease, such as systemic lupus erythematosus or scleroderma. Latent lupus and incomplete lupus are alternative terms that have been used to describe this condition.
The term is sometimes used interchangeably with mixed connective tissue disease, an overlap syndrome. However, MCTD is thought by some researchers to be a clinically distinct entity and is strongly associated with the presence of high titers of ribonucleoprotein (RNP) antibodies.
It is estimated that up to 25 percent of people with systemic autoimmune disease could be considered to have UCTD.
Drug regimens prescribed for lupus nephritis include mycophenolate mofetil (MMF), intravenous cyclophosphamide with corticosteroids, and the immune suppressant azathioprine with corticosteroids. MMF and cyclophosphamide with corticosteroids are equally effective in achieving remission of the disease. MMF is safer than cyclophosphamide with corticosteroids, with less chance of causing ovarian failure, immune problems or hair loss. It also works better than azathioprine with corticosteroids for maintenance therapy. Individuals with lupus nephritis have a high risk for B-cell lymphoma (which begins in the immune system cells).
Patients usually present with systemic symptoms with single or multiorgan dysfunction. Common (and nonspecific) complaints include fatigue, weakness, fever, arthralgias, abdominal pain, hypertension, renal insufficiency, and neurologic dysfunction. The following symptoms should raise a strong suspicion of a vasculitis:
- Mononeuritis multiplex. Also known as asymmetric polyneuropathy, in a non-diabetic this is suggestive of vasculitis.
- Palpable purpura. If patients have this in isolation, it is most likely due to cutaneous leukocytoclastic vasculitis. If the purpura is in combination with systemic organ involvement, it is most likely to be Henoch-Schonlein purpura or microscopic polyarteritis.
- Pulmonary-renal syndrome. Individuals who are coughing up blood and have kidney involvement are likely to have granulomatosis with polyangiitis, microscopic polyangiitis, or anti-GBM disease (Goodpasture's syndrome).
Alpha-1 antitrypsin deficiency panniculitis is a panniculitis associated with a deficiency of the α-antitrypsin enzyme.
Tumid lupus erythematosus (also known as "lupus erythematosus tumidus") is a rare, but distinctive entity in which patients present with edematous erythematous plaques, usually on the trunk.
Lupus erythematosus tumidus (LET) was reported by Henri Gougerot and Burnier R. in 1930. It is a photosensitive skin disorder, a different subtype of cutaneous lupus erythematosus (CLE) from discoid lupus erythematosus (DLE) or subacute CLE (SCLE). LET is usually found on sun-exposed areas of the body. Skin lesions are edematous, urticarialike annular papules and plaques. Topical corticosteroids are not effective as treatment for LET, but many will respond to chloroquine. LET resolves with normal skin, no residual scarring, no hyperpigmentation or hypopigmentation. Cigarette smokers who have LET may not respond very well to chloroquine.
It has been suggested that it is equivalent to Jessner lymphocytic infiltrate of the skin.
Erythema nodosum is a form of panniculitis characterised by tender red nodules, 1–10 cm, associated with systemic symptoms including fever, malaise, and joint pain. Nodules may become bluish-purple, yellowing, and green, and subside over a period of 2–6 weeks without ulcerating or scarring. Erythema nodosum is associated with infections, including Hepatitis C, EBV and tuberculosis, Crohn's disease and sarcoidosis, pregnancy, medications including sulfonamides, and some cancers, including Non-Hodgkin lymphoma and pancreatic cancer.
Kikuchi-Fujimoto disease (KFD) is a rare, self-limiting disorder that typically affects the cervical lymph nodes. Recognition of this condition is crucial, especially because it can easily be mistaken for tuberculosis, lymphoma, or even adenocarcinoma. Awareness of this disorder helps prevent misdiagnosis and inappropriate treatment.
Kikuchi's disease is a very rare disease mainly seen in Japan. Isolated cases are reported in North America, Europe, and Asia. It is mainly a disease of young adults (20–30 years), with a slight bias towards females. The cause of this disease is not known, although infectious and autoimmune causes have been proposed. The course of the disease is generally benign and self-limiting. Lymph node enlargmeent usually resolves over several weeks to six months. Recurrence rate is about 3%. Death from Kikuchi disease is extremely rare and usually occurs due to liver, respiratory, or heart failure.