Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The U.S. Centers for Disease Control and Prevention (CDC) publishes a journal "Emerging Infectious Diseases" that identifies the following factors contributing to disease emergence:
- Microbial adaption; e.g. genetic drift and genetic shift in Influenza A
- Changing human susceptibility; e.g. mass immunocompromisation with HIV/AIDS
- Climate and weather; e.g. diseases with zoonotic vectors such as West Nile Disease (transmitted by mosquitoes) are moving further from the tropics as the climate warms
- Change in human demographics and trade; e.g. rapid travel enabled SARS to rapidly propagate around the globe
- Economic development; e.g. use of antibiotics to increase meat yield of farmed cows leads to antibiotic resistance
- Breakdown of public health; e.g. the current situation in Zimbabwe
- Poverty and social inequality; e.g. tuberculosis is primarily a problem in low-income areas
- War and famine
- Bioterrorism; e.g. 2001 Anthrax attacks
- Dam and irrigation system construction; e.g. malaria and other mosquito borne diseases
A number of studies have reported associations between pathogen load in an area and human behavior. Higher pathogen load is associated with decreased size of ethnic and religious groups in an area. This may be due high pathogen load favoring avoidance of other groups, which may reduce pathogen transmission, or a high pathogen load preventing the creation of large settlements and armies that enforce a common culture. Higher pathogen load is also associated with more restricted sexual behavior, which may reduce pathogen transmission. It also associated with higher preferences for health and attractiveness in mates. Higher fertility rates and shorter or less parental care per child is another association that may be a compensation for the higher mortality rate. There is also an association with polygyny which may be due to higher pathogen load, making selecting males with a high genetic resistance increasingly important. Higher pathogen load is also associated with more collectivism and less individualism, which may limit contacts with outside groups and infections. There are alternative explanations for at least some of the associations although some of these explanations may in turn ultimately be due to pathogen load. Thus, polygny may also be due to a lower male:female ratio in these areas but this may ultimately be due to male infants having increased mortality from infectious diseases. Another example is that poor socioeconomic factors may ultimately in part be due to high pathogen load preventing economic development.
For infecting organisms to survive and repeat the infection cycle in other hosts, they (or their progeny) must leave an existing reservoir and cause infection elsewhere. Infection transmission can take place via many potential routes:
- Droplet contact, also known as the "respiratory route", and the resultant infection can be termed airborne disease. If an infected person coughs or sneezes on another person the microorganisms, suspended in warm, moist droplets, may enter the body through the nose, mouth or eye surfaces.
- Fecal-oral transmission, wherein foodstuffs or water become contaminated (by people not washing their hands before preparing food, or untreated sewage being released into a drinking water supply) and the people who eat and drink them become infected. Common fecal-oral transmitted pathogens include "Vibrio cholerae", "Giardia" species, rotaviruses, "Entameba histolytica", "Escherichia coli", and tape worms. Most of these pathogens cause gastroenteritis.
- Sexual transmission, with the resulting disease being called sexually transmitted disease
- Oral transmission, Diseases that are transmitted primarily by oral means may be caught through direct oral contact such as kissing, or by indirect contact such as by sharing a drinking glass or a cigarette.
- Transmission by direct contact, Some diseases that are transmissible by direct contact include athlete's foot, impetigo and warts
- Vehicle Transmission, transmission by an inanimate reservoir (food, water, soil).
- Vertical transmission, directly from the mother to an embryo, fetus or baby during pregnancy or childbirth. It can occur when the mother gets an infection as an intercurrent disease in pregnancy.
- Iatrogenic transmission, due to medical procedures such as injection or transplantation of infected material.
- Vector-borne transmission, transmitted by a vector, which is an organism that does not cause disease itself but that transmits infection by conveying pathogens from one host to another.
The relationship between "virulence versus transmissibility" is complex; if a disease is rapidly fatal, the host may die before the microbe can be passed along to another host.
Methicillin-resistant Staphylococcus aureus (MRSA) evolved from Methicillin-susceptible Staphylococcus aureus (MSSA) otherwise known as common "S. aureus". Many people are natural carriers of "S. aureus", without being affected in any way. MSSA was treatable with the antibiotic methicillin until it acquired the gene for antibiotic resistance. Though genetic mapping of various strains of MRSA, scientists have found that MSSA acquired the mecA gene in the 1960s, which accounts for its pathogenicity, before this it had a predominantly commensal relationship with humans. It is theorized that when this "S. aureus" strain that had acquired the mecA gene was introduced into hospitals, it came into contact with other hospital bacteria that had already been exposed to high levels of antibiotics. When exposed to such high levels of antibiotics, the hospital bacteria suddenly found themselves in an environment that had a high level of selection for antibiotic resistance, and thus resistance to multiple antibiotics formed within these hospital populations. When "S. aureus" came into contact with these populations, the multiple genes that code for antibiotic resistance to different drugs were then acquired by MRSA, making it nearly impossible to control. It is thought that MSSA acquired the resistance gene through the horizontal gene transfer, a method in which genetic information can be passed within a generation, and spread rapidly through its own population as was illustrated in multiple studies. Horizontal gene transfer speeds the process of genetic transfer since there is no need to wait an entire generation time for gene to be passed on. Since most antibiotics do not work on MRSA, physicians have to turn to alternative methods based in Darwinian medicine. However prevention is the most preferred method of avoiding antibiotic resistance. By reducing unnecessary antibiotic use in human and animal populations, antibiotics resistance can be slowed.
The prognosis of nocardiosis is highly variable. The state of the host's health, site, duration, and severity of the infection all play parts in determining the prognosis. As of now, skin and soft tissue infections have a 100% cure rate, and pleuropulmonary infections have a 90% cure rate with appropriate therapy. The cure rate falls to 63% with those infected with dissemented nocardiosis, with only half of those surviving infections that cause brain abscess. Additionally, 44% of people who are infected in the spinal cord/brain die, increasing to 85% if that person has an already weakened immune system. Unfortunately, there is not a preventative to nocardiosis. The only recommendation is to protect open wounds to limit access.
A list of the more common and well-known diseases associated with infectious pathogens is provided and is not intended to be a complete listing.
White plague is a suite of coral diseases of which three types have been identified, initially in the Florida Keys. They are infectious diseases but it has proved difficult to identify the pathogens involved. White plague type II may be caused by the gram negative bacterium "Aurantimonas coralicida" in the order Rhizobiales but other bacteria have also been associated with diseased corals and viruses may also be implicated.
Other causes or associations of disease are: a compromised immune system, environmental toxins, radiation exposure, diet and lifestyle choices, stress, and genetics. Diseases may also be multifactorial, requiring multiple factors to induce disease. For example: in a murine model, Crohn's disease can be precipitated by a norovirus, but only when both a specific gene variant is present and a certain toxin has damaged the gut.
Although there is not international data available on worldwide infection rates per year, there are roughly 500–1000 documented cases of nocardiosis a year. Most of these cases occur in men, as there is a 3:1 ratio of male of female cases a year; however, this difference may be based on exposure frequency rather than susceptibility differences. From an age perspective, it is not highly more prevalent in one age group than another. Cutaneous Nocardiosis is slightly more common in middle aged men, but as a whole, all ages are susceptible. Additionally, there is no racial basis when it comes to becoming infected with Nocardiosis.
The 2007 guideline “Official American Thoracic Society (ATS) and Infectious Diseases Society of America (IDSA) statement: diagnosis, treatment, and prevention of non-tuberculosis mycobacterial diseases”, notes that M. fortuitum isolates are usually susceptible to multiple oral antimicrobial agents, including the macrolides and quinolones, doxycycline and minocycline, and sulfonamides. Isolates of this mycobacterium are susceptible to the beta-lactam antibiotics, belonging to the carbopenam subgroup, such as Imipenem. Imipenem is a broad spectrum antibiotic produced by the bacteria Streptomyces cattleya. Ondansetron HCL (Zofran) is an antiemetic often given to offset the nausea and vomiting that are a common side effect of Imipenem. Severe infections require IV treatment combined with oral antibiotics for a prolonged period, up to several months. The guideline recommends “for serious skin, bone, and soft tissue M fortuitum disease, a minimum of 4 months of therapy with at least two agents with in vitro activity against the clinical isolate is necessary to provide a high likelihood of cure. Surgery is generally indicated with extensive disease, abscess formation, or where drug therapy is difficult.”
Mycobacterium fortuitum is a nontuberculous species of the phylum actinobacteria (Gram-positive bacteria with high guanine and cytosine content, one of the dominant phyla of all bacteria), belonging to the genus mycobacterium.
Feline infectious anemia (FIA) is an infectious disease found in felines, causing anemia and other symptoms. The disease is caused by a variety of infectious agents, most commonly "Mycoplasma haemofelis" (which used to be called "Haemobartonella"). "Haemobartonella" and "Eperythrozoon" species were reclassified as mycoplasmas. Coinfection often occurs with other infectious agents, including: feline leukemia virus (FeLV), feline immunodeficiency virus (FIV), "Ehrlichia" species, "Anaplasma phagocytophilum", and Candidatus "Mycoplasma haemominutum".
The disease is endemic in tropical and subtropical regions. The exact incidence and geographical distribution of mycetoma throughout the world is not known as the disease is usually painless, slowly progressive and presented to health centres only in late stages by majority of patients. Mycetoma has an uneven worldwide distribution.
Currently, no treatment is available.
Good husbandry measures, such as high water quality, low stocking density, and no mixing of batches, help to reduce disease incidence. To eradicate the disease, very strict protocol with regards to movement, water sources and stock replacement must be in place – and still it is difficult to achieve and comes at a high economic cost.
Some ways to prevent airborne diseases include washing hands, using appropriate hand disinfection, getting regular immunizations against diseases believed to be locally present, wearing a respirator and limiting time spent in the presence of any patient likely to be a source of infection.
Exposure to a patient or animal with an airborne disease does not guarantee receiving the disease. Because of the changes in host immunity and how much the host was exposed to the particles in the air makes a difference to how the disease affects the body.
Antibiotics are not prescribed for patients to control viral infections. They may however be prescribed to a flu patient for instance, to control or prevent bacterial secondary infections. They also may be used in dealing with air-borne bacterial primary infections, such as pneumonic plague.
Additionally the Centers for Disease Control and Prevention (CDC) has told consumers about vaccination and following careful hygiene and sanitation protocols for airborne disease prevention. Consumers also have access to preventive measures like UV Air purification devices that FDA and EPA-certified laboratory test data has verified as effective in inactivating a broad array of airborne infectious diseases. Many public health specialists recommend social distancing to reduce the transmission of airborne infections.
Infectious pancreatic necrosis (IPN) is a severe viral disease of salmonid fish. It is caused by infectious pancreatic necrosis virus, which is a member of the Birnaviridae family. This disease mainly affects young salmonids, such as trout or salmon, of less than six months, although adult fish may carry the virus without showing symptoms. Resistance to infection develops more rapidly in warmer water. It is highly contagious and found worldwide, but some regions have managed to eradicate or greatly reduce the incidence of disease. The disease is normally spread horizontally via infected water, but spread also occurs vertically. It is not a zoonosis.
A skin and skin structure infection (SSSI), also referred to as skin and soft tissue infection (SSTI) or acute bacterial skin and skin structure infection (ABSSSI), is an infection of skin and associated soft tissues (such as loose connective tissue and mucous membranes). The pathogen involved is usually a bacterial species. Such infections often requires treatment by antibiotics.
Until 2008, two types were recognized, complicated skin and skin structure infection (cSSSI) and uncomplicated skin and skin structure infection (uSSSI). "Uncomplicated" SSSIs included simple abscesses, impetiginous lesions, furuncles, and cellulitis. "Complicated" SSSIs included infections either involving deeper soft tissue or requiring significant surgical intervention, such as infected ulcers, burns, and major abscesses or a significant underlying disease state that complicates the response to treatment. Superficial infections or abscesses in an anatomical site, such as the rectal area, where the risk of anaerobic or gram-negative pathogen involvement is higher, should be considered complicated infections. The two categories had different regulatory approval requirements. The uncomplicated category (uSSSI) is normally only caused by "Staphylococcus aureus" and "Streptococcus pyogenes", whereas the complicated category (cSSSI) might also be caused by a number of other pathogens. In cSSSI, the pathogen is known in only about 40% of cases.
Because cSSSIs are usually serious infections, physicians do not have the time for a culture to identify the pathogen, so most cases are treated empirically, by choosing an antibiotic agent based on symptoms and seeing if it works. For less severe infections, microbiologic evaluation via tissue culture has been demonstrated to have high utility in guiding management decisions. To achieve efficacy, physicians use broad-spectrum antibiotics. This practice contributes in part to the growing incidence of antibiotic resistance, a trend exacerbated by the widespread use of antibiotics in medicine in general. The increased prevalence of antibiotic resistance is most evident in methicillin-resistant "Staphylococcus aureus" (MRSA). This species is commonly involved in cSSSIs, worsening their prognosis, and limiting the treatments available to physicians. Drug development in infectious disease seeks to produce new agents that can treat MRSA.
Since 2008, the U.S. Food and Drug Administration has changed the terminology to "acute bacterial skin and skin structure infections" (ABSSSI). The Infectious Diseases Society of America (IDSA) has retained the term "skin and soft tissue infection".
Flacherie (literally: "flaccidness") is a disease of silkworms, caused by silkworms eating infected or contaminated mulberry leaves. Flacherie infected silkworms look weak and can die from this disease. Silkworm larvae that are about to die from Flacherie are a dark brown.
There are two kinds of flacherie: essentially, infectious (viral) flacherie and noninfectious ("bouffee") flacherie. Both are technically a lethal diarrhea.
Bouffée flacherie is caused by heat waves ("bouffée" means "sudden heat spell" in French).
Viral flacherie is ultimately caused by infection with "Bombyx mori" infectious flacherie virus (BmIFV, Iflaviridae), "Bombyx mori" densovirus (BmDNV, Parvoviridae) or "Bombyx mori" cypovirus 1 (BmCPV-1, Reoviridae). This either alone or in combination with bacterial infection destroys the gut tissue. Bacterial pathogens contributing to infectious flaccherie are "Serratia marcescens", and species of "Streptococcus" and "Staphylococcus" in the form known as thatte roga.
Louis Pasteur, who began his studies on silkworm diseases in 1865, was the first one able to recognize that mortality due to viral flacherie was caused by infection. (Priority, however, was claimed by Antoine Béchamp.) Richard Gordon described the discovery: "The French silk industry was meanwhile plummeting from a 130 million to an 8 million francs annual income, because the silkworms had all caught "pébrine," black pepper disease…He [Pasteur] went south from Paris to Alais, and rewarded them by discovering the silkworm epidemic to be inflicted by some sort of living microbe…Pasteur threw in another disease, "flâcherie," silkworm diarrhoea. The cures for both were culling the insects which showed the peppery spots — the peasants bottled the silkworm moths in brandy, for display to the experts — and rigorous hygiene of the mulberry leaf."
Caseous lymphadenitis (CLA) is an infectious disease caused by the bacterium "Corynebacterium pseudotuberculosis" found mostly in goats and sheep that at present has no cure. It manifests itself predominantly in the form of large, pus-filled cysts on the neck, sides and udders of goats and sheep. The disease is spread mostly from an animal coming in contact with pus from a burst cyst on an infected animal, but the disease is highly contagious and is thought to also be spread by coughing or even by flies. Studies have found CL incidence in commercial goat herds as high as 30%.
Airborne transmission of disease depends on several physical variables endemic to the infectious particle. Environmental factors influence the efficacy of airborne disease transmission; the most evident environmental conditions are temperature and relative humidity. The sum of all the factors that influence temperature and humidity, either meteorological (outdoor) or human (indoor), as well as other circumstances influencing the spread of the droplets containing the infectious particles, as winds, or human behavior, sum up the factors influencing the transmission of airborne diseases.
- Climate and living area. Rainfall (number of rainy days being more important than total precipitation), mean of sunshine daily hours, latitude, altitude are characteristic agents to take in account when assessing the possibility of spread of any airborne infection. Furthermore, some infrequent or exceptional extreme events also influence the dissemination of airborne diseases, as tropical storms, hurricanes, typhoons, or monsoons. Climate conditions determine temperature, winds and relative humidity in any territory, either all year around or at isolated moments (days or weeks). Those are the main factors affecting the spread, duration and infectiousness of droplets containing infectious particles. For instance, influenza virus, is spread easily in northern countries (north hemisphere), because of climate conditions which favour the infectiousness of the virus but on the other hand, in those countries, lots of bacterial infections cannot spread outdoor most of the year, keeping in a latent stage.
- Socioeconomics and living conditions. They have a minor role in airborne diseases transmission, but they also have to be taken in consideration. Dwelling is an important aspect. In cities the spread of diseases is faster than in rural areas and outskirts. Normally, cities enclose quarters of buildings, in which the transmission of the viral and bacterial diseases among the neighborhoods is uncomplicated. However, suburban areas are generally more favourable for higher airborne fungal spores
In 1977, a disease of scleractinian corals appeared on reefs off the Florida Keys in the United States and was termed white plague. It caused white lesions and was shown to be an infectious disease, being particularly prevalent in "Mycetophyllia ferox". This disease caused little mortality and occurred sporadically, but was still present in the area in 1984. It is now known as white plague type 1.
In 1995, a new coral disease was described as an epizootic disease in the same reefs in the Florida Keys. Many species of coral found in the area were affected and the mortality rate of these was up to 38%. The pathogen involved was found to be a previously unknown species of bacterium in the order Rhizobiales, which was placed in the newly created genus "Aurantimonas" and given the name "Aurantimonas coralicida", and the disease was described as white plague type 2. The pathogen was isolated from a diseased colony of "Dichocoenia stokesi" and cultured in the laboratory, subsequently being used to inoculate two healthy colonies which then developed the disease. In the next few months, it had spread over of reef and was killing seventeen species of coral. Over the next four years, it spread further, but interestingly, was most severe in different regions each year.
However, white plague is an enigmatic disease. Further research cast into doubt the role of "A. coralicida" as a causative agent by finding that bacterium on healthy parts of colonies of "Orbicella annularis" affected by white plague disease but absent from diseased parts. In these diseased colonies, an α-proteobacterium similar to one which causes a disease in juvenile oysters has been implicated, being found on the diseased parts of the coral but not on the sound tissues. These anomalous findings may be caused by the fact that there are two or more diseases with similar symptoms, both known as white plague.
In 1999, a third and still more virulent variant appeared in the northern Florida Keys. White plague type III mostly affected "Colpophyllia natans" and "Orbicella annularis".
A white-plague like disease reported from the Red Sea in 2005 has been shown to be caused by a different bacterial pathogen, "Thalassomonas loyana". Further research has shown that viruses may be involved in white plague infections, the coral small circular ssDNA viruses (SCSDVs) being present in association with diseased tissue. This group of viruses is known to cause disease in plants and animals.
Mycetoma may be caused by bacteria from the phylum Actinomycetes, or by fungi (Eumycetes) where it is called Eumycetoma. Bacterial and fungal species that can cause mycetoma are listed below under their characteristic colours of discharge from infected wounds:
Red discharge
- "Actinomadura pelletieri"
White or Yellow discharge
- "Acremonium strictum"
- "Actinomadura madurae"
- "Aspergillus nidulans"
- "Noetestudina rosatii"
- "Phaeoacremonium krajdenii"
- "Pseudallescheria boydii"
Black discharge
- "Aspergillus terreus"
- "Curvularia lunata"
- "Cladophialophora bantiana"
- "Exophiala jeanselmei"
- "Leptosphaeria senegalensis"
- "Leptosphaeria tompkinsii"
- "Madurella grisea"
- "Madurella mycetomatis"
- "Pyrenochaeta romeroi"
Some species of the bacterial genus "Nocardia" (including "Nocardia asteroides" and "Nocardia brasiliensis") which can cause mycetoma produce a yellow coloured discharge, and those of the bacterial genus "Streptomyces" (including "Streptomyces somaliensis") produce an yellow or red coloured discharge.
Contact with farm animals can lead to disease in farmers or others that come into contact with infected animals. Glanders primarily affects those who work closely with horses and donkeys. Close contact with cattle can lead to cutaneous anthrax infection, whereas inhalation anthrax infection is more common for workers in slaughterhouses, tanneries and wool mills. Close contact with sheep who have recently given birth can lead to clamydiosis, or enzootic abortion, in pregnant women, as well as an increased risk of Q fever, toxoplasmosis, and listeriosis in pregnant or the otherwise immunocompromised. Echinococcosis is caused by a tapeworm which can be spread from infected sheep by food or water contaminated with feces or wool. Bird flu is common in chickens. While rare in humans, the main public health worry is that a strain of bird flu will recombine with a human flu virus and cause a pandemic like the 1918 Spanish flu. In 2017, free range chickens in the UK were temporarily ordered to remain inside due to the threat of bird flu. Cattle are an important reservoir of cryptosporidiosis and mainly affects the immunocompromised.
Outbreaks of zoonoses have been traced to human interaction with and exposure to animals at fairs, petting zoos, and other settings. In 2005, the Centers for Disease Control and Prevention (CDC) issued an updated list of recommendations for preventing zoonosis transmission in public settings. The recommendations, developed in conjunction with the National Association of State Public Health Veterinarians, include educational responsibilities of venue operators, limiting public and animal contact, and animal care and management.
Postweaning multisystemic wasting syndrome ("PMWS") is the classic PCVD entity, caused by PCV-2. PCV-2 has a near universal distribution – present in most pig herds. In contrast, PMWS is more sporadic in its distribution. Experimental induction of PMWS has not been achieved by PCV-2 infection alone, using infectious DNA clones of the virus or a pure form of PCV-2 derived from infectious DNA clones. Therefore, it is assumed that PMWS is a multifactorial disease. PCV-2 is necessary but not sufficient for the development of PMWS. However, viral infection by itself tends to cause only mild disease, and co-factors such as other infections or immunostimulation seem necessary for development of severe disease.[1] For example, concurrent infection with porcine parvovirus or PRRS virus, or immunostimulation lead to increased replication of PCV-2 and more severe disease in PCV-2-infected pigs. There is no significant correlation of the disease with virus sequence variation with affected and control pigs.