Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Streptococcus species are the cause of opportunistic infections in poultry leading to acute and chronic conditions in affected birds. Disease varies according to the Streptococcal species but common presentations include septicaemia, peritonitis, salpingitis and endocarditis.
Common species affecting poultry include:
- "S. gallinaceus" in broiler chickens
- "S. gallolyticus" which is a pathogen of racing pigeons and turkey poults
- "S. dysgalactiae" in broiler chickens
- "S. mutans" in geese
- "S. pluranimalium" in broiler chickens
- "S. equi subsp. zooepidemicus" in chickens and turkeys
- "S. suis" in psittacine birds
In birds, "Chlamydia psittaci" infection is referred to as avian chlamydiosis (AC). Infected birds shed the bacteria through feces and nasal discharges, which can remain infectious for several months. Many strains remain quiescent in birds until activated under stress. Birds are excellent, highly mobile vectors for the distribution of chlamydial infection because they feed on, and have access to, the detritus of infected animals of all sorts.
The common routes of transmission for the disease-causing bacteria are fecal-oral, person-to-person sexual contact, ingestion of contaminated food (generally unpasteurized (raw) milk and undercooked or poorly handled poultry), and waterborne (i.e., through contaminated drinking water). Contact with contaminated poultry, livestock, or household pets, especially puppies, can also cause disease.
Animals farmed for meat are the main source of campylobacteriosis. A study published in PLoS Genetics (September 26, 2008) by researchers from Lancashire, England, and Chicago, Illinois, found that 97 percent of campylobacteriosis cases sampled in Lancashire were caused by bacteria typically found in chicken and livestock. In 57 percent of cases, the bacteria could be traced to chicken, and in 35 percent to cattle. Wild animal and environmental sources were accountable for just three percent of disease.
The infectious dose is 1000–10,000 bacteria (although ten to five hundred bacteria can be enough to infect humans). "Campylobacter" species are sensitive to hydrochloric acid in the stomach, and acid reduction treatment can reduce the amount of needed to cause disease.
Exposure to bacteria is often more common during travelling, and therefore campylobacteriosis is a common form of travelers' diarrhea.
The organism should be cultured and antibiotic sensitivity should be determined before treatment is started. Amoxycillin is usually effective in treating streptococcal infections.
Biosecurity protocols and good hygiene are important in preventing the disease.
Vaccination is available against "S. gallolyticus" and can also protect pigeons.
"C. psittaci" in birds is often systemic and infections can be inapparent, severe, acute or chronic with intermittent shedding. Signs in birds include "inflamed eyes, difficulty in breathing, watery droppings and green urates."
The World Health Organization recommends the following:
- Food should be properly cooked and hot when served.
- Consume only pasteurized or boiled milk and milk products, never raw milk products.
- Make sure that ice is from safe water.
- If you are not sure of the safety of drinking water, boil it, or disinfect it with chemical disinfectant.
- Wash hands thoroughly and frequently with soap, especially after using the toilet and after contact with pets and farm animals.
- Wash fruits and vegetables thoroughly, especially if they are to be eaten raw. Peel fruits and vegetables whenever possible.
- Food handlers, professionals and at home, should observe hygienic rules during food preparation.
- Professional food handlers should immediately report to their employer any fever, diarrhea, vomiting or visible infected skin lesions.
Diagnosis is made with isolation of "Pasteurella multocida" in a normally sterile site (blood, pus, or cerebrospinal fluid).
Pasteurellosis is an infection with a species of the bacterial genus "Pasteurella", which is found in humans and other animals.
"Pasteurella multocida" (subspecies "P. m. septica" and "P. m. multocida") is carried in the mouth and respiratory tract of various animals, including pigs. It is a small, Gram-negative bacillus with bipolar staining by Wayson stain. In animals, it can originate fulminant septicaemia (chicken cholera), but is also a common commensal.
Until taxonomic revision in 1999, "Mannheimia" spp. were classified as "Pasteurella" spp., and infections by organisms now called "Mannheimia" spp., as well as by organisms now called "Pasteurella" spp., were designated as pasteurellosis. The term "pasteurellosis" is often still applied to mannheimiosis, although such usage has declined.
In the western world, GBS (in the absence of effective prevention measures) is the main cause of bacterial infections in newborns, such as septicemia, pneumonia, and meningitis, which can lead to death or long-term after effects.
GBS infections in newborns are separated into two clinical types, early-onset disease (GBS-EOD) and late-onset disease (GBS-LOD). GBS-EOD manifests from 0 to 7 living days in the newborn, most of the cases of EOD being apparent within 24 h from birth. GBS-LOD starts between 7 and 90 days after birth.
The most common clinical syndromes of GBS-EOD are septicemia without apparent location, pneumonia, and less frequently meningitis. Bacteremia without a focus occurs in 80-85%, pneumonia in 10-15%, and meningitis in 5-10% of cases. The initial clinical findings are respiratory signs in more than 80% of cases. Neonates with meningitis often have an initial clinical presentation identical to presentation in those without meningeal affectation. An exam of the cerebrospinal fluid is often necessary to rule out meningitis.
Colonization with GBS during labour is the primary risk factor for the development of GBS-EOD. GBS-EOD is acquired vertically (vertical transmission), through exposure of the fetus or the baby to GBS from the vagina of a colonized woman, either "in utero" (because of ascending infection) or during birth, after rupture of membranes. Infants can also be infected during passage through the birth canal, nevertheless, newborns who acquire GBS through this route can only become colonized, and these colonized infants usually do not develop GBS-EOD.
Roughly 50% of newborns of GBS colonized mothers are also GBS colonized and (without prevention measures) 1-2% of these newborns will develop GBS-EOD.
In the past, the incidence of GBS-EOD ranged from 0.7 to 3.7 per thousand live births in the US, and from 0.2 to 3.25 per thousand in Europe.
In 2008, after widespread use of antenatal screening and intrapartum antibiotic prophylaxis, the Centers for Disease Control and Prevention of United States reported an incidence of 0.28 cases of GBS-EOD per thousand live births in the US.
Though maternal GBS colonization is the key determinant for GBS-EOD, other factors also increase the risk. These factors are:
- Onset of labour before 37 weeks of gestation (premature birth)
- Prolonged rupture of membranes (longer duration of membrane rupture) (≥18 h before delivery)
- Intrapartum (during childbirth) fever (>38 °C, >100.4 °F)
- Amniotic infections (chorioamnionitis)
- Young maternal age
Nevertheless, most babies who develop GBS-EOD are born to colonized mothers without any of these risk factors. Heavy GBS vaginal colonization is also associated with a higher risk for GBS-EOD. Women who had one of these risk factors but who are not GBS colonized at labour are at low risk for GBS-EOD compared to women who were colonized prenatally, but had none of the aforementioned risk factors.
Presence of low levels of anticapsular antibodies against GBS in the mother are also of great importance for the development of GBS-EOD.
Because of that, a previous sibling with GBS-EOD is also an important risk factor for the development of the infection in subsequent deliveries, probably reflecting the lack of protective antibodies in the mother.
Overall, the case fatality rates from GBS-EOD have declined, from 50% observed in studies from the 1970s to between 2 and 10% in recent years, mainly as a consequence of improvements in therapy and management. Fatal neonatal infections by GBS are more frequent among premature infants.
GBS-LOD affects infants from 7 days to 3 months of age and has a lower case fatality rate (1%-6%) than GBS-EOD. Clinical syndromes of GBS-EOD are bacteremia without a focus (65%), meningitis (25%), cellulitis, osteoarthritis, and pneumonia.
Prematurity has been reported to be the main risk factor. Each week of decreasing gestation increases the risk by a factor of 1.34 for developing GBS-LOD.
GBS-LOD is not acquired through vertical transmission during delivery; it can be acquired later from the mother from breast milk or from environmental and community sources.
GBS-LOD commonly shows nonspecific signs, and diagnosis should be made obtaining blood cultures in febrile newborns. Hearing loss and mental impairment can be a long-term consequence of GBS meningitis.
Possible complications include the horse becoming a chronic carrier of the disease, asphyxia due to enlarged lymph nodes compressing the larynx or windpipe, bastard strangles (spreading to other areas of the body), pneumonia, guttural pouch filled with pus, abscesses, purpura haemorrhagica, and heart disease. The average length for the course of this disease is 23 days.
The most efficient treatment in breeding flocks or laying hens is individual intramuscular injections of a long-acting tetracycline, with the same antibiotic in drinking water, simultaneously. The mortality and clinical signs will stop within one week, but the bacteria might remain present in the flock.
Some strains of group A streptococci (GAS) cause severe infection. Severe infections are usually invasive, meaning that the bacteria has entered parts of the body where bacteria are not usually found, such as the blood, lungs, deep muscle or fat tissue. Those at greatest risk include children with chickenpox; persons with suppressed immune systems; burn victims; elderly persons with cellulitis, diabetes, vascular disease, or cancer; and persons taking steroid treatments or chemotherapy. Intravenous drug users also are at high risk. GAS is an important cause of puerperal fever worldwide, causing serious infection and, if not promptly diagnosed and treated, death in newly delivered mothers. Severe GAS disease may also occur in healthy persons with no known risk factors.
All severe GAS infections may lead to shock, multisystem organ failure, and death. Early recognition and treatment are critical. Diagnostic tests include blood counts and urinalysis as well as cultures of blood or fluid from a wound site.
Severe Group A streptococcal infections often occur sporadically but can be spread by person-to-person contact.
Public Health policies internationally reflect differing views of how the close contacts of people affected by severe Group A streptococcal infections should be treated. Health Canada and the US CDC recommend close contacts see their doctor for full evaluation and may require antibiotics; current UK Health Protection Agency guidance is that, for a number of reasons, close contacts should not receive antibiotics unless they are symptomatic but that they should receive information and advice to seek immediate medical attention if they develop symptoms. However, guidance is clearer in the case of mother-baby pairs: both mother and baby should be treated if either develops an invasive GAS infection within the first 28 days following birth (though some evidence suggests that this guidance is not routinely followed in the UK).
GBS is found in the gastrointestinal and genitourinary tract of humans. In different studies, GBS vaginal colonization rate ranges from 4 to 36%, with most studies reporting rates over 20%. These variations in the reported prevalence of asymptomatic (presenting no symptoms of disease) colonization could be related to the different detection methods used, and differences in populations studied.
Though GBS is an asymptomatic colonizer of the gastrointestinal human tract in up to 30% of otherwise healthy adults, including pregnant women,
this opportunistic harmless bacterium can, in some circumstances, cause severe invasive infections.
The disease is spread by an infected horse when nasal discharge or pus from the draining lymph nodes contaminate pastures, feed troughs, brushes, bedding, tack etc.
Equines of any age may contract the disease, although younger and elderly equines are more susceptible. Young equines may lack immunity to the disease because they have not had prior exposure. Geriatric equines may have a weaker immune system.
A subset of children with acute, rapid-onset of tic disorders and obsessive compulsive disorder (OCD) are hypothesized to be due to an autoimmune response to group A beta-hemolytic streptococcal infection (PANDAS).
In acute cases, a green diarrhea can be an early symptom.
The most typical symptom, in chronic cases, is the swelling of the wattles. It is more frequent in resistant local breeds. Rather than a general infection, localized infections are more characteristic. These often occur in the respiratory tract including the sinuses and pneumatoics bones, hock joints, sternal bursa, foot pads, peritoneal cavity and oviducts.
In acute cases, the most typical p.m. lesion is the petechiae observed in the epicardial fatty tissue. Necrotic foci on liver are usually found and general hyperemia is common. Due to the speed of infection and mortality, birds are in good body condition and do not exhibit the signs of prolonged illness.
There are several risk factors that increase the likelihood of developing bacteremia from any type of bacteria. These include:
- HIV infection
- Diabetes Mellitus
- Chronic hemodialysis
- Solid organ transplant
- Stem cell transplant
- Treatment with glucocorticoids
- Liver failure
Gram negative bacterial species are responsible for approximately 24% of all cases of healthcare-associated bacteremia and 45% of all cases of community-acquired bacteremia. In general, gram negative bacteria enter the bloodstream from infections in the respiratory tract, genitourinary tract, gastrointestinal tract, or hepatobiliary system. Gram-negative bacteremia occurs more frequently in elderly populations (65 years or older) and is associated with higher morbidity and mortality in this population.
"E.coli" is the most common cause of community-acquired bacteremia accounting for approximately 75% of cases. E.coli bacteremia is usually the result of a urinary tract infection. Other organisms that can cause community-acquired bacteremia include "pseudomonas aeruginosa", "klebsiella pneumoniae", and "proteus mirabilis". "Salmonella" infection, despite mainly only resulting in gastroenteritis in the developed world, is a common cause of bacteremia in Africa. It principally affects children who lack antibodies to Salmonella and HIV+ patients of all ages.
Among healthcare-associated cases of bacteremia, gram negative organisms are an important cause of bacteremia in the ICU. Catheters in the veins, arteries, or urinary tract can all create a way for gram negative bacteria to enter the bloodstream. Surgical procedures of the genitourinary tract, intestinal tract, or hepatobiliary tract can also lead to gram negative bacteremia. "Pseudomonas" and "enterobacter" species are the most important causes of gram negative bacteremia in the ICU.
Some ways to prevent airborne diseases include washing hands, using appropriate hand disinfection, getting regular immunizations against diseases believed to be locally present, wearing a respirator and limiting time spent in the presence of any patient likely to be a source of infection.
Exposure to a patient or animal with an airborne disease does not guarantee receiving the disease. Because of the changes in host immunity and how much the host was exposed to the particles in the air makes a difference to how the disease affects the body.
Antibiotics are not prescribed for patients to control viral infections. They may however be prescribed to a flu patient for instance, to control or prevent bacterial secondary infections. They also may be used in dealing with air-borne bacterial primary infections, such as pneumonic plague.
Additionally the Centers for Disease Control and Prevention (CDC) has told consumers about vaccination and following careful hygiene and sanitation protocols for airborne disease prevention. Consumers also have access to preventive measures like UV Air purification devices that FDA and EPA-certified laboratory test data has verified as effective in inactivating a broad array of airborne infectious diseases. Many public health specialists recommend social distancing to reduce the transmission of airborne infections.
Fever and sickness behavior and other signs of infection are often taken to be due to them. However, they are evolved physiological and behavioral responses of the host to clear itself of the infection. Instead of incurring the costs of deploying these evolved responses to infections, the body opts to tolerate an infection as an alternative to seeking to control or remove the infecting pathogen.
Subclinical infections are important since they allow infections to spread from a reserve of carriers. They also can cause clinical problems unrelated to the direct issue of infection. For example, in the case of urinary tract infections in women, this infection may cause preterm delivery if the person becomes pregnant without proper treatment.
Bumblefoot is a common infection for domesticated poultry and waterfowl such as chickens, ducks and quail. Due to constant walking on hard, rough, or sharp surfaces, birds can develop small wounds on the bottom of their feet. These wounds are very susceptible to infection by opportunistic bacterial pathogens, chiefly "Staphylococcus aureus". Treatment often requires opening the wound to drain the pus, soaking it in epsom salts, and antibiotic treatment and local application of the antiseptic pyodine as local dressing.
Staphylococcal enteritis may be avoided by using proper hygiene and sanitation with food preparation. This includes thoroughly cooking all meats. If food is to be stored longer than two hours, keep hot foods hot (over 140 °F) and cold foods cold (40 °F or under). Ensure to refrigerate leftovers promptly and store cooked food in a wide, shallow container and refrigerate as soon as possible. Sanitation is very important. Keep kitchens and food-serving areas clean and sanitized. Finally, as most staphylococcal food poisoning are the result of food handling, hand washing is critical. Food handlers should use hand sanitizers with alcohol or thorough hand washing with soap and water.
Tips for hand washing:
1. Wash hands with warm, soapy water before and after handling raw foods.
2. Always wash your hands after using the bathroom, after changing a baby's diaper, after touching pets or other animals, and after sneezing or coughing
3. Properly dress or glove.
"S. aureus" is an enterotoxin producer. Enterotoxins are chromosomally encoded exotoxins that are produced and secreted from several bacterial organisms. It is a heat stable toxin and is resistant to digestive protease. It is the ingestion of the toxin that causes the inflammation and swelling of the intestine.
An individual may only develop signs of an infection after a period of subclinical infection, a duration that is called the incubation period. This is the case, for example, for subclinical sexually transmitted diseases such as AIDS and genital warts. Individuals with such subclinical infections, and those that never develop overt illness, creates a reserve of individuals that can transmit an infectious agent to infect other individuals. Because such cases of infections do not come to clinical attention, health statistics can often fail to measure the true prevalence of an infection in a population, and this prevents the accurate modeling of its infectious transmission.
In sheep, the disease is also called the "circling disease". The most obvious signs for the veterinarians are neurological, especially lateral deviation of the neck and head.