Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Death occurs immediately after traumatic rupture of the thoracic aorta 75%–90% of the time since bleeding is so severe, and 80–85% of patients die before arriving at a hospital. Of those who live to reach a hospital, 23% die at the time of or shortly after arrival. In the US, an estimated 7,500–8,000 cases occur yearly, of which 1,000–1,500 make it to a hospital alive; these low numbers make it difficult to estimate the efficacy of surgical options. However, if surgery is performed in time, it can offer a chance of survival.
Though there is a concern that a small, stable tear in the aorta could enlarge and cause complete rupture of the aorta and heavy bleeding, this may be less common than previously believed as long as the patient's blood pressure does not get too high.
Causes include
- Acute pancreatitis, whereby methemalbumin formed from digested blood tracks subcutaneously around the abdomen from the inflamed pancreas.
- Pancreatic hemorrhage
- Retroperitoneal hemorrhage
- Blunt abdominal trauma
- Ruptured / hemorrhagic ectopic pregnancy.
- Spontaneous bleeding secondary to coagulopathy (congenital or acquired)
- Aortic rupture, from ruptured abdominal aortic aneurysm or other causes.
The injury is usually caused by high speed impacts such as those that occur in vehicle collisions and serious falls. It may be due to different rates of deceleration of the heart and the aorta, which is in a fixed position.
Emergency exploratory laparotomy with cesarean delivery accompanied by fluid and blood transfusion are indicated for the management of uterine rupture. Depending on the nature of the rupture and the condition of the patient, the uterus may be either repaired or removed (cesarean hysterectomy). Delay in management places both mother and child at significant risk.
Mortality from aortic rupture is up to 90%. 65–75% of patients die before they arrive at hospital and up to 90% die before they reach the operating room.
The most common cause of a ruptured spleen is blunt abdominal trauma, such as in traffic collisions or sports accidents. Direct, penetrating injuries, for example, stab or gunshot wounds are rare.
Non-traumatic causes are less common. These include infectious diseases, medical procedures such as colonoscopy, haematological diseases, medications, and pregnancy.
In less than one percent of cases of infectious mononucleosis splenic rupture may occur.
Spontaneous cases are considered to be caused by intrinsic factors that weaken the arterial wall. Only a very small proportion (1–4%) have a clear underlying connective tissue disorder, such as Ehlers–Danlos syndrome type 4 and more rarely Marfan's syndrome. Ehlers-Danlos syndrome type 4, caused by mutations of the "COL3A" gene, leads to defective production of the collagen, type III, alpha 1 protein and causes skin fragility as well as weakness of the walls of arteries and internal organs. Marfan's syndrome results from mutations in the "FBN1" gene, defective production of the protein fibrillin-1, and a number of physical abnormalities including aneurysm of the aortic root.
There have also been reports in other genetic conditions, such as osteogenesis imperfecta type 1, autosomal dominant polycystic kidney disease and pseudoxanthoma elasticum, α antitrypsin deficiency and hereditary hemochromatosis, but evidence for these associations is weaker. Genetic studies in other connective tissue-related genes have mostly yielded negative results. Other abnormalities to the blood vessels, such as fibromuscular dysplasia, have been reported in a proportion of cases. Atherosclerosis does not appear to increase the risk.
There have been numerous reports of associated risk factors for vertebral artery dissection; many of these reports suffer from methodological weaknesses, such as selection bias. Elevated homocysteine levels, often due to mutations in the "MTHFR" gene, appear to increase the risk of vertebral artery dissection. People with an aneurysm of the aortic root and people with a history of migraine may be predisposed to vertebral artery dissection.
The annual incidence is about 1.1 per 100,000 annually in population studies from the United States and France. From 1994 to 2003, the incidence increased threefold; this has been attributed to the more widespread use of modern imaging modalities rather than a true increase. Similarly, those living in urban areas are more likely to receive appropriate investigations, accounting for increased rates of diagnosis in those dwelling in cities. It is suspected that a proportion of cases in people with mild symptoms remains undiagnosed.
There is controversy as to whether VAD is more common in men or in women; an aggregate of all studies shows that it is slightly higher incidence in men (56% versus 44%). Men are on average 37–44 years old at diagnosis, and women 34–44. While dissection of the carotid and vertebral arteries accounts for only 2% of strokes (which are usually caused by high blood pressure and other risk factors, and tend to occur in the elderly), they cause 10–25% of strokes in young and middle-aged people.
Dissecting aneurysms of the vertebral artery constitute 4% of all cerebral aneurysms, and are hence a relatively rare but important cause of subarachnoid hemorrhage.
During labor the shoulder will be wedged into the pelvis and the head lie in one iliac fossa, the breech in the other. With further uterine contractions the baby suffocates. The uterus continues to try to expel the impacted fetus and as its retraction ring rises, the musculature in the lower segments thins out leading eventually to a uterine rupture and the death of the mother. Impacted shoulder presentations contribute to maternal mortality. Obviously a cesarean section should be performed before the baby has died, but even when the baby has died or impaction has occurred, C/S is the method of choice of delivery, as alternative methods of delivery are potentially too traumatic for the mother. If the baby is preterm or macerated and very small a spontaneous delivery has been observed.
The incidence of myocardial rupture has decreased in the era of urgent revascularization and aggressive pharmacological therapy for the treatment of an acute myocardial infarction. However, the decrease in the incidence of myocardial rupture is not uniform; there is a slight increase in the incidence of rupture if thrombolytic agents are used to abort a myocardial infarction. On the other hand, if primary percutaneous coronary intervention is performed to abort the infarction, the incidence of rupture is significantly lowered. The incidence of myocardial rupture if PCI is performed in the setting of an acute myocardial infarction is about 1 percent.
If diagnosed within the first few hours of presentation, the pooling blood may be evacuated using a syringe. Once the blood has clotted, removal by this method is no longer possible and the clot can be removed via an incision over the lump under local anesthetic. The incision is not stitched, but will heal very well. Care needs to be taken in regard to bleeding from the wound and possible infection with fecal bacteria. If left alone it will usually heal within a few days or weeks. The topical application of a cream containing a Heparinoid is often advised to clear the clot .
A uterine scar from a previous cesarean section is the most common risk factor. (In one review, 52% had previous cesarean scars.) Other forms of uterine surgery that result in full-thickness incisions (such as a myomectomy), dysfunctional labor, labor augmentation by oxytocin or prostaglandins, and high parity may also set the stage for uterine rupture. In 2006, an extremely rare case of uterine rupture in a first pregnancy with no risk factors was reported.
Grey Turner's sign refers to bruising of the s, the part of the body between the last rib and the top of the hip. The bruising appears as a blue discoloration, and is a sign of retroperitoneal hemorrhage, or bleeding behind the peritoneum, which is a lining of the abdominal cavity. Grey Turner's sign takes 24–48 hours to develop, and can predict a severe attack of acute pancreatitis.
Grey Turner's sign may be accompanied by Cullen's sign. Both signs may be indicative of pancreatic necrosis with retroperitoneal or intraabdominal bleeding. Grey Turner's sign is named after British surgeon George Grey Turner.
Perianal hematoma are caused by the rupture of a small vein that drains blood from the anus. This rupture may be the result of forceful or strained bowel movement or caused by heavy lifting, coughing or straining. Once the rupture has formed, blood quickly pools within a few hours and, if left untreated, forms a clot.
The prognosis of myocardial rupture is dependent on a number of factors, including which portion of the myocardium is involved in the rupture. In one case series, if myocardial rupture involved the free wall of the left ventricle, the mortality rate was 100.0%. The chances of survival rise dramatically if the patient: 1. has a witnessed initial event; 2. seeks early medical attention; 3. has an accurate diagnosis by the emergentologist; and 4. happens to be at a facility that has a cardiac surgery service (by whom a quick repair of the rupture can be attempted). Even if the individual survives the initial hemodynamic sequelae of the rupture, the 30‑day mortality is still significantly higher than if rupture did not occur.
Treatment varies according to severity, ranging from monitoring of the hematoma (in haemodynamic stability) to emergency surgery (when patients develop hypovolemic shock requiring seminephrectomy or nephrectomy). Vascular causes lead to surgery due to severity of hemorrhage. Robotic-assisted partial nephrectomy has been proposed as a surgical treatment of a ruptured angiomyolipoma causing retroperitoneal hemorrhage, combining the advantages of a kidney preservation procedure and the benefits of a minimally invasive procedure without compromising the safety of the patient.
Cerebral vasospasm is the prolonged, intense vasoconstriction of the larger conducting arteries in the subarachnoid space which is initially surrounded by a clot.
Significant narrowing develops gradually over the first few days after the aneurysmal rupture. This spasm usually is maximal in about a week's time following haemorrhage.
Vasospasm is the one of the leading causes of death after the aneurysmal rupture along with the effect of the initial haemorrhage and later bleeding.
Injuries to the aorta are usually the result of trauma, such as deceleration and crush injuries. Deceleration injuries almost always occur during high speed impacts, such as those in motor vehicle crashes and falls from a substantial height. Several mechanical processes can occur and are reflected in the injury itself. A more recently proposed mechanism is that the aorta can be compressed between bony structures (such as the manubrium, clavicle, and first rib) and the spine. In the ascending aorta (the portion of the aorta which is almost vertical), one mechanism of injury is torsion (a two-way twisting).
Diaphragmatic injuries are present in 1–7% of people with significant blunt trauma and an average of 3% of abdominal injuries.
A high body mass index may be associated with a higher risk of diaphragmatic rupture in people involved in vehicle accidents. It is rare for the diaphragm alone to be injured, especially in blunt trauma; other injuries are associated in as many as 80–100% of cases. In fact, if the diaphragm is injured, it is an indication that more severe injuries to organs may have occurred. Thus, the mortality after a diagnosis of diaphragmatic rupture is 17%, with most deaths due to lung complications. Common associated injuries include head injury, injuries to the aorta, fractures of the pelvis and long bones, and lacerations of the liver and spleen. Associated injuries occur in over three quarters of cases.
A significant complication of diaphragmatic rupture is traumatic diaphragmatic herniation: organs such as the stomach that herniate into the chest cavity and may be strangulated, losing their blood supply. Herniation of abdominal organs is present in 3–4% of people with abdominal trauma who present to a trauma center.
The spleen is an organ in the left upper quadrant of the abdomen that filters blood by removing old or damaged blood cells and platelets. While not essential to sustain life, the spleen performs protective immunological functions in the body. It also helps the immune system by destroying bacteria and other foreign substances by opsonization and phagocytosis, and by producing antibodies. It also stores approximately 33 percent of all platelets in the body.
The delivery of the second twin in a transverse lie with a shoulder presentation represents a special situation that may be amenable to a vaginal delivery. As the first twin has just been delivered and the cervix is fully dilated the obstetrician may perform an internal version, that is inserting one hand into the uterus, find the baby’s feet, and then bring the baby into a breech position and deliver the baby as such.
It is recommended that women with vasa previa should deliver through elective cesarean prior to rupture of the membranes. Given the timing of membrane rupture is difficult to predict, elective cesarean delivery at 35–36 weeks is recommended. This gestational age gives a reasonable balance between the risk of death and that of prematurity. Several authorities have recommended hospital admission about 32 weeks. This is to give the patient proximity to the operating room for emergency delivery should the membranes rupture. Because these patients are at risk for preterm delivery, it is recommended that steroids should be given to promote fetal lung maturation. When bleeding occurs, the patient goes into labor, or if the membranes rupture, immediate treatment with an emergency caesarean delivery is usually indicated.
According to a review of 51 studies from 21 countries, the average incidence of subarachnoid hemorrhage is 9.1 per 100,000 annually. Studies from Japan and Finland show higher rates in those countries (22.7 and 19.7, respectively), for reasons that are not entirely understood. South and Central America, in contrast, have a rate of 4.2 per 100,000 on average.
Although the group of people at risk for SAH is younger than the population usually affected by stroke, the risk still increases with age. Young people are much less likely than middle-age people (risk ratio 0.1, or 10 percent) to have a subarachnoid hemorrhage. The risk continues to rise with age and is 60 percent higher in the very elderly (over 85) than in those between 45 and 55. Risk of SAH is about 25 percent higher in women over 55 compared to men the same age, probably reflecting the hormonal changes that result from the menopause, such as a decrease in estrogen levels.
Genetics may play a role in a person's disposition to SAH; risk is increased three- to fivefold in first-degree relatives of people having had a subarachnoid hemorrhage. However, lifestyle factors are more important in determining overall risk. These risk factors are smoking, hypertension (high blood pressure), and excessive alcohol consumption. Having smoked in the past confers a doubled risk of SAH compared to those who have never smoked. Some protection of uncertain significance is conferred by caucasian ethnicity, hormone replacement therapy, and diabetes mellitus. There is likely an inverse relationship between total serum cholesterol and the risk of non-traumatic SAH, though confirmation of this association is hindered by a lack of studies. Approximately 4 percent of aneurysmal bleeds occur after sexual intercourse and 10 percent of people with SAH are bending over or lifting heavy objects at the onset of their symptoms.
Overall, about 1 percent of all people have one or more cerebral aneurysms. Most of these, however, are small and unlikely to rupture.
Various classifications have been proposed for CCF. They may be divided into low-flow or high-flow, traumatic or spontaneous and direct or indirect. The traumatic CCF typically occurs after a basal skull fracture. The spontaneous dural cavernous fistula which is more common usually results from a degenerative process in older patients with systemic hypertension
and atherosclerosis. Direct fistulas occur when the Internal Carotid artery (ICA) itself fistulizes into the Cavernous sinus whereas indirect is when a branch of the ICA or External Carotid artery (ECA) communicates with the cavernous sinus.
A popular classification divides CCF into four varieties depending on the type of arterial supply.