Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The management of an acute event of vaso-occlusive crisis is the use of potent analgesics (opioids), rehydration with normal saline or Ringer's lactate, treatment of malaria (whether symptomatic or not) using artemisinin combination therapy, and the use of oxygen via face mask, especially for acute chest syndrome. Hyperbaric oxygen has also been shown to be a useful adjunct in pain reduction. Antibiotics may be utilized because patients usually have occult infection due to a "functional asplenia".
Asplenia is the absence of normal spleen function. It predisposes to some septicemia infections. Therefore, vaccination and antibiotic measures are essential in such cases. There are multiple causes:
- Some people congenitally completely lack a spleen, although this is rare.
- Sickle-cell disease can cause a functional asplenia (or autosplenectomy) by causing infarctions of the spleen during repeated sickle-cell crises.
- It may be removed surgically (known as a splenectomy), but this is rarely performed, as it carries a high risk of infection and other adverse effects. Indications include following abdominal injuries with rupture and hemorrhage of the spleen, or in the treatment of certain blood diseases (Idiopathic thrombocytopenic purpura, hereditary spherocytosis, etc.), certain forms of lymphoma or for the removal of splenic tumors or cysts.
The highest frequency of sickle cell disease is found in tropical regions, particularly sub-Saharan Africa, tribal regions of India and the Middle-East. Migration of substantial populations from these high prevalence areas to low prevalence countries in Europe has dramatically increased in recent decades and in some European countries sickle-cell disease has now overtaken more familiar genetic conditions such as haemophilia and cystic fibrosis. In 2015, it resulted in about 114,800 deaths.
Sickle-cell disease occurs more commonly among people whose ancestors lived in tropical and sub-tropical sub-Saharan regions where malaria is or was common. Where malaria is common, carrying a single sickle-cell allele (trait) confers a selective advantage—in other words, being a heterozygote is advantageous. Specifically, humans with one of the two alleles of sickle-cell disease show less severe symptoms when infected with malaria.
This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.
Absence of effective splenic function or absence of the whole spleen (asplenia) is associated with increased risks of overwhelming post splenectomy infection, especially from polysaccharide encapsulated bacteria and organisms that invade erythrocytes. People without a spleen have a weakened immune system, although other immune organs compensate for the missing spleen. Vaccination against encapsulated bacteria and prophylactic antibiotics can be used to counteract lowered immunity in asplenic patients. Specifically, people without a spleen are recommended to be vaccinated against pneumonia, influenza, Haemophilus influenza type b and meningococci.
About 90% of people survive to age 20, and close to 50% survive beyond the fifth decade. In 2001, according to one study performed in Jamaica, the estimated mean survival for people with sickle-cell was 53 years old for men and 58 years old for women with homozygous SCD. The specific life expectancy in much of the developing world is unknown.
A vaso-occlusive crisis is a common painful complication of sickle cell anemia in adolescents and adults. It is a form of sickle cell crisis. Sickle cell anemia – most common in those of African, Hispanic, and Mediterranean origin – leads to sickle cell crisis when the circulation of blood vessels is obstructed by sickled red blood cells, causing ischemic injuries. The most common complaint is of pain, and recurrent episodes may cause irreversible organ damage. One of the most severe forms is the acute chest syndrome which occurs as a result of infarction of the lung parenchyma. This can rapidly result in death. Other types of vaso-occlusive crisis in sickle cell anemia include dactylitis, priapism, abdominal pain, and jaundice.
A large number of drugs
have been associated with agranulocytosis, including antiepileptics (such as carbamazepine and valproate), antithyroid drugs (carbimazole, methimazole, and propylthiouracil), antibiotics (penicillin, chloramphenicol and co-trimoxazole), ACE inhibitors (benazepril), cytotoxic drugs, gold, NSAIDs (indomethacin, naproxen, phenylbutazone, metamizole), mebendazole, allopurinol the antidepressants mianserin and mirtazapine, and some antipsychotics (the atypical antipsychotic clozapine in particular). Clozapine users in the United States, Australia, Canada, and the UK must be nationally registered for monitoring of low WBC and absolute neutrophil counts (ANC).
Although the reaction is generally idiosyncratic rather than proportional, experts recommend that patients using these drugs be told about the symptoms of agranulocytosis-related infection, such as a sore throat and a fever.
The Centers for Disease Control traced outbreaks of agranulocytosis among cocaine users, in the US and Canada between March 2008 and November 2009, to the presence of levamisole in the drug supply. The Drug Enforcement Administration reported that, as of February 2010, 71% of seized cocaine lots coming into the US contained levamisole as a cutting agent. Levamisole is an antihelminthic (i.e. deworming) drug used in animals. The reason for adding levamisole to cocaine is unknown, although it can be due to their similar melting points and solubilities.
Pneumococcal septicemia, or whole-body infection caused by the "Streptococcus pneumoniae" bacteria, has been reported to cause autosplenectomy but is a very rare and poorly understood complication of the infection.
In patients that have no symptoms of infection, management consists of close monitoring with serial blood counts, withdrawal of the offending agent (e.g., medication), and general advice on the significance of fever.
Transfusion of granulocytes would have been a solution to the problem. However, granulocytes live only ~10 hours in the circulation (for days in spleen or other tissue), which gives a very short-lasting effect. In addition, there are many complications of such a procedure.
The most common causes of splenomegaly in developed countries are infectious mononucleosis, splenic infiltration with cancer cells from a hematological malignancy and portal hypertension (most commonly secondary to liver disease, and sarcoidosis). Splenomegaly may also come from bacterial infections, such as syphilis or an infection of the heart's inner lining (endocarditis).
The possible causes of moderate splenomegaly (spleen <1000 g) are many, and include:
The causes of massive splenomegaly (spleen >1000 g) are fewer, and include:
- visceral leishmaniasis (kala-azar)
- chronic myelogenous leukemia
- myelofibrosis
- malaria
- splenic marginal zone lymphoma
Reticulocytopenia, also known as an "aplastic crisis" or "marrow failure", is the medical term for an abnormal decrease of reticulocytes in the body. Reticulocytes are immature red blood cells. Reticulocytopenia may be a result of viral parvovirus B19 infection, which invades and destroys red blood cell precursors and halts the red cell production. If infection occurs in individuals with sickle cell anemia, spherocytosis, or Beta thalassemia that will lead to incorporation of two anemia-induced mechanisms: decreased red cell production and hemolysis. The result is a rapid and severe anemia (aplastic crisis) which may require blood transfusion.
If the splenomegaly underlies hypersplenism, a splenectomy is indicated and will correct the hypersplenism. However, the underlying cause of the hypersplenism will most likely remain; consequently, a thorough diagnostic workup is still indicated, as, leukemia, lymphoma and other serious disorders can cause hypersplenism and splenomegaly. After splenectomy, however, patients have an increased risk for infectious diseases.
Patients undergoing splenectomy should be vaccinated against "Haemophilus influenzae", "Streptococcus pneumoniae", and "Meningococcus". They should also receive annual influenza vaccinations. Long-term prophylactic antibiotics may be given in certain cases.
In cases of infectious mononucleosis splenomegaly is a common symptom and health care providers may consider using abdominal ultrasonography to get insight into a person's condition. However, because spleen size varies greatly, ultrasonography is not a valid technique for assessing spleen enlargement and should not be used in typical circumstances or to make routine decisions about fitness for playing sports.
Sickle cell-beta thalassemia is caused by inheritance of a sickle cell allele from one parent and a beta thalassemia allele from the other.
Enlargement of the spleen is known as splenomegaly. It may be caused by sickle cell anemia, sarcoidosis, malaria, bacterial endocarditis, leukemia, pernicious anemia, Gaucher's disease, leishmaniasis, Hodgkin's disease, Banti's disease, hereditary spherocytosis, cysts, glandular fever (mononucleosis or 'Mono' caused by the Epstein-Barr Virus), and tumours. Primary tumors of the spleen include hemangiomas and hemangiosarcomas. Marked splenomegaly may result in the spleen occupying a large portion of the left side of the abdomen.
The spleen is the largest collection of lymphoid tissue in the body. It is normally palpable in preterm infants, in 30% of normal, full-term neonates, and in 5% to 10% of infants and toddlers. A spleen easily palpable below the costal margin in any child over the age of 3–4 years should be considered abnormal until proven otherwise.
Splenomegaly can result from antigenic stimulation (e.g., infection), obstruction of blood flow (e.g., portal vein obstruction), underlying functional abnormality (e.g., hemolytic anemia), or infiltration (e.g., leukemia or storage disease, such as Gaucher's disease). The most common cause of acute splenomegaly in children is viral infection, which is transient and usually moderate. Basic work-up for acute splenomegaly includes a complete blood count with differential, platelet count, and reticulocyte and atypical lymphocyte counts to exclude hemolytic anemia and leukemia. Assessment of IgM antibodies to viral capsid antigen (a rising titer) is indicated to confirm Epstein-Barr virus or cytomegalovirus. Other infections should be excluded if these tests are negative.
The basic pathology is some kind of obstructive pathology in the portal, hepatic or splenic vein that causes obstruction of venous blood flow from the spleen towards the heart. The cause of such obstruction may be abnormalities present at birth (congenital) of certain veins, blood clots, or various underlying disorders causing inflammation and obstruction of veins (vascular obstruction) of the liver.
Genetic testing for the presence of mutations in protein molecules is considered to be a confirmatory testing technique. It is important to know the risks regarding the transmission and dangers of HPP.
Patients with sickle cell-beta thalassemia may present with painful crises similar to patients with sickle cell disease
It may result in death, and it is one of the most common causes of death for people with sickle cell anemia.
Enlargement of spleen, ascites, jaundice, and the result of destruction of various blood cells by spleen – anemia, leukopenia, thrombocytopenia, gastrointestinal bleeding – may constitute the presenting symptoms.
Mutations of the alphaspectrin gene causes this disease.
HPP can be considered as a subset of hereditary elliptocytosis to homozygous and it leads to severe disruption.
Lymphocytosis is a feature of infection, particularly in children. In the elderly, lymphoproliferative disorders, including chronic lymphocytic leukaemia and lymphomas, often present with lymphadenopathy and a lymphocytosis.
Causes of absolute lymphocytosis include:
- acute viral infections, such as infectious mononucleosis (glandular fever), hepatitis and Cytomegalovirus infection
- other acute infections such as pertussis
- some protozoal infections, such as toxoplasmosis and American trypanosomiasis (Chagas disease)
- chronic intracellular bacterial infections such as tuberculosis or brucellosis
- chronic lymphocytic leukemia
- acute lymphoblastic leukemia
- lymphoma
- post-splenectomy state
- smoking
Causes of relative lymphocytosis include: age less than 2 years; acute viral infections; connective tissue diseases, thyrotoxicosis, Addison's disease, and splenomegaly with splenic sequestration of granulocytes.
Several factors may increase the tendency for clot formation, such as specific infections (such as infectious mononucleosis, cytomegalovirus infection, malaria, or babesiosis), inherited clotting disorders (thrombophilia, such as Factor V Leiden, antiphospholipid syndrome), malignancy (such as pancreatic cancer) or metastasis, or a combination of these factors.
In some conditions, blood clots form in one part of the circulatory system and then dislodge and travel to another part of the body, which could include the spleen. These emboligenic disorders include atrial fibrillation, patent foramen ovale, endocarditis or cholesterol embolism.
Splenic infarction is also more common in hematological disorders with associated splenomegaly, such as the myeloproliferative disorders. Other causes of splenomegaly (for example, Gaucher disease or hemoglobinopathies) can also predispose to infarction. Splenic infarction can also result from a sickle cell crisis in patients with sickle cell anemia. Both splenomegaly and a tendency towards clot formation feature in this condition. In sickle cell disease, repeated splenic infarctions lead to a non-functional spleen (autosplenectomy).
Any factor that directly compromises the splenic artery can cause infarction. Examples include abdominal traumas, aortic dissection, torsion of the splenic artery (for example, in wandering spleen) or external compression on the artery by a tumor. It can also be a complication of vascular procedures.
Splenic infarction can be due to vasculitis or disseminated intravascular coagulation. Various other conditions have been associated with splenic infarction in case reporters, for example granulomatosis with polyangiitis or treatment with medications that predispose to vasospasm or blood clot formation, such as vasoconstrictors used to treat esophageal varices, sumatriptan or bevacizumab.
Hydroxyurea is a medication that can help to prevent acute chest syndrome. It may cause a low white blood cell count, which can predispose the person to some types of infection.
To minimise the risks associated with splenectomy, antibiotic and vaccination protocols have been established, but are often poorly adhered to by physicians and patients due to the complications resulting from antibiotic prophylaxis such as development of an overpopulation of Clostridium difficile in the intestinal tract.
Splenic infarction is a condition in which oxygen supply to the spleen is interrupted, leading to partial or complete infarction (tissue death due to oxygen shortage) in the organ.
Splenic infarction occurs when the splenic artery or one of its branches are occluded, for example by a blood clot. Although it can occur asymptomatically, the typical symptom is severe pain in the left upper quadrant of the abdomen, sometimes radiating to the left shoulder. Fever and chills develop in some cases. It has to be differentiated from other causes of acute abdomen.
An abdominal CT scan is the most commonly used modality to confirm the diagnosis, although abdominal ultrasound can also contribute.
There is no specific treatment, except treating the underlying disorder and providing adequate pain relief. Surgical removal of the spleen (splenectomy) is only required if complications ensue; surgical removal predisposes to overwhelming post-splenectomy infections.
In one series of 59 patients, mortality amounted to 5%. Complications include a ruptured spleen, bleeding, an abscess of the spleen (for example, if the underlying cause is infective endocarditis) or pseudocyst formation. Splenectomy may be warranted for persistent pseudocysts due to the high risk of subsequent rupture.