Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The prevalence of SCA6 varies by culture. In Germany, SCA6 accounts for 10-25% of all autosomal dominant cases of SCA (SCA itself having a prevalence of 1 in 100,000). This prevalence in lower in Japan, however, where SCA6 accounts for only ~6% of spinocerebellar ataxias. In Australia, SCA6 accounts for 30% of spinocerebellar ataxia cases while 11% in the Dutch.
The hereditary ataxias are categorized by mode of inheritance and causative gene or chromosomal locus. The hereditary ataxias can be inherited in an autosomal dominant, autosomal recessive, or X-linked manner.
- Many types of autosomal dominant cerebellar ataxias for which specific genetic information is available are now known. Synonyms for autosomal-dominant cerebellar ataxias (ADCA) used prior to the current understanding of the molecular genetics were Marie's ataxia, inherited olivopontocerebellar atrophy, cerebello-olivary atrophy, or the more generic term "spinocerebellar degeneration." (Spinocerebellar degeneration is a rare inherited neurological disorder of the central nervous system characterized by the slow degeneration of certain areas of the brain. There are three forms of spinocerebellar degeneration: Types 1, 2, 3. Symptoms begin during adulthood.)
- There are five typical "autosomal-recessive" disorders in which ataxia is a prominent feature: Friedreich ataxia, ataxia-telangiectasia, ataxia with vitamin E deficiency, ataxia with oculomotor apraxia (AOA), spastic ataxia. Disorder subdivisions: Friedreich's ataxia, Spinocerebellar ataxia, Ataxia telangiectasia, Vasomotor ataxia, Vestibulocerebellar, Ataxiadynamia, Ataxiophemia, Olivopontocerebellar atrophy, and Charcot-Marie-Tooth disease.
- There have been reported cases where a polyglutamine expansion may lengthen when passed down, which often can result in an earlier age-of-onset and a more severe disease phenotype for individuals who inherit the disease allele. This falls under the category of genetic anticipation.
Spinocerebellar ataxia (SCA), also known as spinocerebellar atrophy or spinocerebellar degeneration, is a progressive, degenerative, genetic disease with multiple types, each of which could be considered a disease in its own right. An estimated 150,000 people in the United States have a diagnosis of spinocerebellar ataxia at any given time. SCA is hereditary, progressive, degenerative, and often fatal. There is no known effective treatment or cure. SCA can affect anyone of any age. The disease is caused by either a recessive or dominant gene. In many cases people are not aware that they carry a relevant gene until they have children who begin to show signs of having the disorder.
Patients with severe forms of MJD have a life expectancy of approximately 35 years. Those with mild forms have a normal life expectancy. The cause of death of those who die early is often aspiration pneumonia.
There is no known prevention of spinocerebellar ataxia. Those who are believed to be at risk can have genetic sequencing of known SCA loci performed to confirm inheritance of the disorder.
In terms of frequency, is estimated at 2 per 100,000, it has identified in different regions of the world. Some clusters of certain types of autosomal dominant cerebellar ataxia reach a prevalence of 5 per 100,000.
There is no known prevention of spinocerebellar ataxia. Those who are believed to be at risk can have genetic sequencing of known SCA loci performed to confirm inheritance of the disorder.
The disease is caused by a mutation in the ATXN3 gene, which is located on chromosome 14q. The gene contains lengthy irregular repetitions of the code "CAG", producing a mutated protein called ataxin-3. (Normally, the number of copies is between 13 and 41.) MJD is an autosomal dominant disease, meaning that if either parent gives the defective gene to a child, the child will show symptoms of the disease. Therefore, if one parent suffers from this disease and the other parent does not, there will be a 50% chance of their child inheriting the disease.
The pons (a structure located on the brain stem) is one of the areas affected by MJD. The striatum (a brain area connected to balance and movement) is also affected by this disease, which could explain both of the main motor problems cause by MJD: the tightening and twisting of the limb and the abrupt, irregular movements.
In affected cells, this protein builds up and assembles intranuclear inclusion bodies. These insoluble aggregates are hypothesized to interfere with the normal activity of the nucleus and induce the cell to degenerate and die.
Friedreich's ataxia is the most prevalent inherited ataxia, affecting about 1 in 50,000 people in the United States. Males and females are affected equally. The estimated carrier prevalence is 1:110.
A 1984 Canadian study was able to trace 40 cases of classical Friedreich's disease from 14 French-Canadian kindreds previously thought to be unrelated to one common ancestral couple arriving in New France in 1634: Jean Guyon and Mathurine Robin.
In most cases, between the age of 2 and 4 oculomotor signals are present. Between the age of 2 and 8, telangiectasias appears. Usually by the age of 10 the child needs a wheel chair. Individuals with autosomal recessive cerebellum ataxia usually survive till their 20s; in some cases individuals have survived till their 40s or 50s.
Olivopontocerebellar atrophy (OPCA) is the degeneration of neurons in specific areas of the brain – the cerebellum, pons, and inferior olives. OPCA is present in several neurodegenerative syndromes, including inherited and non-inherited forms of ataxia (such as the hereditary spinocerebellar ataxia known as Machado–Joseph disease) and multiple system atrophy (MSA), with which it is primarily associated.
OPCA may also be found in the brains of individuals with prion disorders and inherited metabolic diseases. The characteristic areas of brain damage that indicate OPCA can be seen by imaging the brain using CT scans or MRI studies.
The term was originally coined by Joseph Jules Dejerine and André Thomas.
There is no cure or treatment for GSS. It can, however, be identified through genetic testing. GSS is the slowest to progress among human prion diseases. Duration of illness can range from 3 months to 13 years, with an average duration of 5 or 6 years.
Olivopontocerebellar atrophy is hereditary, but has an unknown genetic basis. There are two forms:
A few non-hereditary diseases formerly categorized as olivopontocerebellar atrophy have been reclassified as forms of multiple system atrophy as well as to four hereditary types, that have been currently reclassified as four different forms of spinocerebellar ataxia:
GSS is one of a small number of diseases that are caused by prions, a class of pathogenic proteins highly resistant to proteases.
A change in codon 102 from proline to leucine has been found in the prion protein gene ("PRNP", on chromosome 20) of most affected individuals. Therefore, it appears this genetic change is usually required for the development of the disease.
In terms of the genetics of autosomal dominant cerebellar ataxia 11 of 18 known genes are caused by repeated expansions in corresponding proteins, sharing the same mutational mechanism. SCAs can be caused by conventional mutations or large rearrangements in genes that make glutamate and calcium signaling, channel function, tau regulation and mitochondrial activity or RNA alteration.
The mechanism of Type I is not completely known, however Whaley, et al. suggest the polyglutamine product is toxic to the cell at a protein level, this effect may be done by transcriptional dysregulation and disruption of calcium homeostasis which causes apoptosis to occur earlier.
Friedreich's ataxia is an autosomal recessive inherited disease that causes progressive damage to the nervous system. It manifests in initial symptoms of poor coordination such as gait disturbance; it can also lead to scoliosis, heart disease and diabetes, but does not affect cognitive function. The disease is progressive, and ultimately a wheelchair is required for mobility. Its incidence in the general population is roughly 1 in 50,000.
The particular genetic mutation (expansion of an intronic GAA triplet repeat in the FXN gene) leads to reduced expression of the mitochondrial protein frataxin. Over time this deficiency causes the aforementioned damage, as well as frequent fatigue due to effects on cellular metabolism.
The ataxia of Friedreich's ataxia results from the degeneration of nervous tissue in the spinal cord, in particular sensory neurons essential (through connections with the cerebellum) for directing muscle movement of the arms and legs. The spinal cord becomes thinner and nerve cells lose some of their myelin sheath (the insulating covering on some nerve cells that helps conduct nerve impulses).
The condition is named after the German physician Nikolaus Friedreich, who first described it in the 1860s.
HDL1 is an unusual, autosomal dominant familial prion disease. Only described in one family, it is caused by an eight-octapeptide repeat insertion in the "PRNP" gene. More broadly, inherited prion diseases in general can mimic HD.
The Huntington's disease-like syndromes (often abbreviated as HD-like or "HDL" syndromes) are a family of inherited neurodegenerative diseases that closely resemble Huntington's disease (HD) in that they typically produce a combination of chorea, cognitive decline or dementia and behavioural or psychiatric problems.
The clinical course of BVVL can vary from one patient to another. There have been cases with progressive deterioration, deterioration followed by periods of stabilization, and deterioration with abrupt periods of increasing severity.
The syndrome has previously been considered to have a high mortality rate but the initial response of most patients to the Riboflavin protocol are very encouraging and seem to indicate a significantly improved life expectancy could be achievable. There are three documented cases of BVVL where the patient died within the first five years of the disease. On the contrary, most patients have survived more than 10 years after the onset of their first symptom, and several cases have survived 20–30 years after the onset of their first symptom.
Families with multiple cases of BVVL and, more generally, multiple cases of infantile progressive bulbar palsy can show variability in age of disease onset and survival. Dipti and Childs described such a situation in which a family had five children that had Infantile PBP. In this family, three siblings showed sensorineural deafness and other symptoms of BVVL at an older age. The other two siblings showed symptoms of Fazio-Londe disease and died before the age of two.
Treatment of Ramsay Hunt Syndrome Type 1 is specific to individual symptoms. Myoclonus and seizures may be treated with drugs like valproate.
Some have described this condition as difficult to characterize.
40 cases were diagnosed in northern Italy between 1940 and 1990. The gene frequency for this autosomal recessive condition was estimated at 1 in 218. In 1989, 16 cases on EOCA were diagnosed in children with a mean onset age of 7.1 In 1990, 20 patients affected by EOCA were studied. It was found that the ataxia of this study's participants affected the pyramidal tracts and peripheral nerves.
Neurodegeneration is the progressive loss of structure or function of neurons, including death of neurons. Many neurodegenerative diseases – including amyotrophic lateral sclerosis, Parkinson's, Alzheimer's, and Huntington's – occur as a result of neurodegenerative processes. Such diseases are incurable, resulting in progressive degeneration and/or death of neuron cells. As research progresses, many similarities appear that relate these diseases to one another on a sub-cellular level. Discovering these similarities offers hope for therapeutic advances that could ameliorate many diseases simultaneously. There are many parallels between different neurodegenerative disorders including atypical protein assemblies as well as induced cell death. Neurodegeneration can be found in many different levels of neuronal circuitry ranging from molecular to systemic.
Ramsay Hunt syndrome (RHS) type 1 is a rare, degenerative, neurological disorder characterized by myoclonus epilepsy, intention tremor, progressive ataxia and occasionally cognitive impairment
It has also been alternatively called "dyssynergia cerebellaris myoclonica", "dyssynergia cerebellaris progressiva", dentatorubral degeneration, or Ramsay Hunt cerebellar syndrome.
The progression of symptoms varies widely between each case of FXTAS; the onset of symptoms may be gradual, with progression of the disease spanning multiple years or decades. Alternatively, symptoms may progress rapidly.
FXTAS has shown strong age-dependent penetrance, afflicting older permutation carriers with greater prevalence. Male carriers, age 50 and above have a 30% chance of acquiring FXTAS, while male carriers, age 75 and above, have a 75% chance of developing FXTAS. While initially described to affect male carriers, female carriers of the FMR1 gene mutation have also been found to develop FXTAS. However, due to X-inactivation, female carriers are much less likely to develop classic ataxia and tremor signs for FXTAS, instead demonstrating symptoms such as fibromyalgia, thyroid disease, hypertension, and seizures.
SCA13 is typified by early onset, mildly progressive cerebellar ataxia with accompanying dysarthria, mental retardation, and nystagmus. Symptoms and age of onset can vary slightly according to the causative mutation.