Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
All forms of androgen insensitivity are associated with infertility, though exceptions have been reported for both the mild and partial forms. Lifespan is not thought to be affected by AIS.
Estimates for the incidence of androgen insensitivity syndrome are based on a relatively small population size, thus are known to be imprecise. CAIS is estimated to occur in one of every 20,400 46,XY births. A nationwide survey in the Netherlands based on patients with genetic confirmation of the diagnosis estimates that the minimal incidence of CAIS is one in 99,000. The incidence of PAIS is estimated to be one in 130,000. Due to its subtle presentation, MAIS is not typically investigated except in the case of male infertility, thus its true prevalence is unknown.
Depending on the mutation, a person with a 46,XY karyotype and AIS can have either a male (MAIS) or female (CAIS) phenotype, or may have genitalia that are only partially masculinized (PAIS). The gonads are testes regardless of phenotype due to the influence of the Y chromosome. A 46,XY female, thus, does not have ovaries or a uterus, and can neither contribute an egg towards conception nor gestate a child.
Several case studies of fertile 46,XY males with AIS have been published, although this group is thought to be a minority. Additionally, some infertile males with MAIS have been able to conceive children after increasing their sperm count through the use of supplementary testosterone. A genetic male conceived by a man with AIS would not receive his father's X chromosome, thus would neither inherit nor carry the gene for the syndrome. A genetic female conceived in such a way would receive her father's X chromosome, thus would become a carrier.
Due to its mild presentation, MAIS often goes unnoticed and untreated. Management of MAIS is currently limited to symptomatic management; methods to correct a malfunctioning androgen receptor protein that result from an AR gene mutation are not currently available. Treatment includes surgical correction of mild gynecomastia, minor hypospadias repair, and testosterone supplementation. Supraphysiological doses of testosterone have been shown to correct diminished secondary sexual characteristics in men with MAIS, as well as to reverse infertility due to low sperm count. As is the case with PAIS, men with MAIS will experience side effects from androgen therapy (such as the suppression of the hypothalamic-pituitary-gonadal axis) at a higher dosage than unaffected men. Careful monitoring is required to ensure the safety and efficacy of treatment. Regular breast and prostate examinations may be necessary due to comorbid association with breast and prostate cancers.
In most full-term infant boys with cryptorchidism but no other genital abnormalities, a cause cannot be found, making this a common, sporadic, unexplained (idiopathic) birth defect. A combination of genetics, maternal health, and other environmental factors may disrupt the hormones and physical changes that influence the development of the testicles.
- Severely premature infants can be born before descent of testes. Low birth weight is also a known factor.
- A contributing role of environmental chemicals called endocrine disruptors that interfere with normal fetal hormone balance has been proposed. The Mayo Clinic lists "parents' exposure to some pesticides" as a known risk factor.
- Diabetes and obesity in the mother.
- Risk factors may include exposure to regular alcohol consumption during pregnancy (5 or more drinks per week, associated with a 3x increase in cryptorchidism, when compared to non-drinking mothers. Cigarette smoking is also a known risk factor.
- Family history of undescended testicle or other problems of genital development.
- Cryptorchidism occurs at a much higher rate in a large number of congenital malformation syndromes. Among the more common are Down syndrome Prader–Willi syndrome, and Noonan syndrome.
- In vitro fertilization, use of cosmetics by the mother, and preeclampsia have also been recognized as risk factors for development of cryptorchidism.
In 2008 a study was published that investigated the possible relationship between cryptorchidism and prenatal exposure to a chemical called phthalate (DEHP) which is used in the manufacture of plastics. The researchers found a significant association between higher levels of DEHP metabolites in the pregnant mothers and several sex-related changes, including incomplete descent of the testes in their sons. According to the lead author of the study, a national survey found that 25% of U.S. women had phthalate levels similar to the levels that were found to be associated with sexual abnormalities.
A 2010 study published in the European medical journal "Human Reproduction" examined the prevalence of congenital cryptorchidism among offspring whose mothers had taken mild analgesics, primarily over-the-counter pain medications including ibuprofen (e.g. Advil) and paracetamol (acetaminophen). Combining the results from a survey of pregnant women prior to their due date in correlation with the health of their children and an "ex vivo" rat model, the study found that pregnant women who had been exposed to mild analgesics had a higher prevalence of baby boys born with congenital cryptorchidism.
New insight into the testicular descent mechanism has been hypothesized by the concept of a male programming window (MPW) derived from animal studies. According to this concept, testicular descent status is "set" during the period from 8 to 14 weeks of gestation in humans. Undescended testis is a result of disruption in androgen levels only during this programming window.
This syndrome, evenly spread in all ethnic groups, has a prevalence of 1-2 subjects per every 1000 males in the general population. 3.1% of infertile males have Klinefelter syndrome. The syndrome is also the main cause of male hypogonadism.
According to 2008 meta-analysis, the prevalence of the syndrome has increased over the past decades; however, this does not appear to be related to increased age of the mother at conception, as no increase was observed in the rates of other trisomies of sex chromosomes (XXX and XYY). The National Institutes of Health; however, state that older mothers might have a slightly increased risk.
One of the strongest arguments for early orchiopexy is reducing the risk of testicular cancer. About 1 in 500 men born with one or both testes undescended develops testicular cancer, roughly a 4 to 40 fold increased risk. The peak incidence occurs in the 3rd and 4th decades of life. The risk is higher for intra-abdominal testes and somewhat lower for inguinal testes, but even the "normally descended" testis of a man whose other testis was undescended has about a 20% higher cancer risk than those of other men.
The most common type of testicular cancer occurring in undescended testes is seminoma. It is usually treatable if caught early, so urologists often recommend that boys who had orchiopexy as infants be taught testicular self-examination, to recognize testicular masses and seek early medical care for them. Cancer developing in an intra-abdominal testis would be unlikely to be recognized before considerable growth and spread, and one of the advantages of orchiopexy is that a mass developing in a scrotal testis is far easier to recognize than an intra-abdominal mass.
It was originally felt that orchidopexy resulted in easier detection of testis cancer but did not lower the risk of actually developing cancer. However, recent data has resulted in a paradigm shift. The New England Journal of Medicine published in 2007 that orchidopexy performed before puberty resulted in a significantly reduced risk of testicular cancer than if done after puberty.
The risk of malignancy in the undescended testis is 4 to 10 times higher than that in the general population and is approximately 1 in 80 with a unilateral undescended testis and 1 in 40 to 1 in 50 for bilateral undescended testes. The peak age for this tumor is 15–45 yr. The most common tumor developing in an undescended testis is a seminoma (65%); in contrast, after orchiopexy, seminomas represent only 30% of testis tumors.
Children with XXY differ little from other children. Although they can face problems during adolescence, often emotional and behavioral, and difficulties at school, most of them can achieve full independence from their families in adulthood. Most can lead a normal, healthy life.
The results of a study carried out on 87 Australian adults with the syndrome shows that those who have had a diagnosis and appropriate treatment from a very young age had a significant benefit with respect to those who had been diagnosed in adulthood.
There is research suggesting Klinefelter syndrome substantially decreases life expectancy among affected individuals, though the evidence is not definitive. A 1985 publication identified a greater mortality mainly due to diseases of the aortic valve, development of tumors and possible subarachnoid hemorrhages, reducing life expectancy by about 5 years. Later studies have reduced this estimated reduction to an average of 2.1 years. These results are still questioned data, are not absolute, and will need further testing.
Spermatogenesis arrest is a complex process of interruption in the differentiation of germinal cells of specific cellular type, which elicits an altered spermatozoa formation. Spermatogenic arrest is usually due to genetic factors resulting in irreversible azoospermia. However some cases may be consecutive to hormonal, thermic, or toxic factors and may be reversible either spontaneously or after a specific treatment.
To some extent, it is possible to change testicular size. Short of direct injury or subjecting them to adverse conditions, e.g., higher temperature than they are normally accustomed to, they can be shrunk by competing against their intrinsic hormonal function through the use of externally administered steroidal hormones. Steroids taken for muscle enhancement (especially anabolic steroids) often have the undesired side effect of testicular shrinkage.
Similarly, stimulation of testicular functions via gonadotropic-like hormones may enlarge their size. Testes may shrink or atrophy during hormone replacement therapy or through chemical castration.
In all cases, the loss in testes volume corresponds with a loss of spermatogenesis.
Testicular size as a proportion of body weight varies widely. In the mammalian kingdom, there is a tendency for testicular size to correspond with multiple mates (e.g., harems, polygamy). Production of testicular output sperm and spermatic fluid is also larger in polygamous animals, possibly a spermatogenic competition for survival. The testes of the right whale are likely to be the largest of any animal, each weighing around 500 kg (1,100 lb).
Among the Hominidae, gorillas have little female promiscuity and sperm competition and the testes are small compared to body weight (0.03%). Chimpanzees have high promiscuity and large testes compared to body weight (0.3%). Human testicular size falls between these extremes (0.08%).
Testis weight also varies in seasonal breeders like deer and horses. The change is related to changes in testosterone production.
Human testicles are smaller than chimpanzee testicles but larger than gorilla testicles.
A 1994 review of 150 cases reported in the literature found that 38% had died with a mean age of death of 2 years. 32% were still alive at the time of the report with a mean age of 4.65. No data were available for the remainder. The author described living with DDS as "walking a multidimensional tight rope".
Only a few individuals who did not have fatal kidney and bladder complications are known to have survived beyond birth with this condition.
Trisomy 8 mosaicism affects wide areas of chromosome 8 containing many genes, and can thus be associated with a range of symptoms.
- Mosaic trisomy 8 has been reported in rare cases of Rothmund-Thomson syndrome, a genetic disorder associated with the DNA helicase RECQL4 on chromosome 8q24.3. The syndrome is "characterized by skin atrophy, telangiectasia, hyper- and hypopigmentation, congenital skeletal abnormalities, short stature, premature aging, and increased risk of malignant disease".
- Some individuals trisomic for chromosome 8 were deficient in production of coagulation factor VII due to a factor 7 regulation gene (F7R) mapped to 8p23.3-p23.1.
- Trisomy and other rearrangements of chromosome 8 have also been found in tricho–rhino–phalangeal syndrome.
- Small regions of chromosome 8 trisomy and monosomy are also created by recombinant chromosome 8 syndrome (San Luis Valley syndrome), causing anomalies associated with tetralogy of Fallot, which results from recombination between a typical chromosome 8 and one carrying a parental paracentric inversion.
- Trisomy is also found in some cases of chronic myeloid leukaemia, potentially as a result of karyotypic instability caused by the fusion gene.
The cause of DDS is most commonly (96% of patients) an abnormality in the WT1 gene (Wilms tumor suppressor gene). These abnormalities include changes in certain exons (9 and 8) and mutations in some alleles of the WT1 gene. Genetically, the syndrome is due to mutations in the Wilms tumor suppressor gene, WT1, which is on chromosome 11 (11p13). These mutations are usually found in exons 8 or 9, but at least one has been reported in exon 4.
Sirenomelia, alternatively known as Mermaid syndrome, is a rare congenital deformity in which the legs are fused together, giving them the appearance of a mermaid's tail as the nickname suggests.
This condition is found in approximately one out of every 100,000 live births (about as rare as conjoined twins) and is usually fatal within a day or two of birth because of complications associated with abnormal kidney and urinary bladder development and function. More than half the cases of sirenomelia result in stillbirth and this condition is 100 times more likely to occur in identical twins than in single births or fraternal twins. It results from a failure of normal vascular supply from the lower aorta in utero. Maternal diabetes has been associated with caudal regression syndrome and sirenomelia, although a few sources question this association.
VACTERL-H is an expanded form of the VACTERL association that concludes that this diagnosis is a less severe form of sirenomelia. The disorder was formerly thought to be an extreme case of caudal regression syndrome; however, it was reclassified to be considered a separate condition.
Urofacial Syndrome occurs due to either disruption or mutation of a gene on chromosome 10q23q24. The gene is located on a 1 centimorgan interval between D10S1433 and D10S603. Alteration of this gene leads to alteration of facial and urinary developmental fields. This gene is believed to be the HPSE2 gene. The HPSE2 gene is expressed in both the central nervous system as well as the bladder. Heparanase 2 is protein coded by exons 8 and 9 on the HPSE2 gene. This protein is believed to be altered in the case of this syndrome. Studies performed on mice indicate that HPSE2 has no enzymatic activity.
Mutations in the HPSE2 gene on chromosome 10q23q24 have been observed to cause Ochoa Syndrome. This means the defective gene responsible for the disorder is located on an autosome (chromosome 10 is an autosome), and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
The relationship between a defective HPSE2 gene and Ochoa syndrome is unclear. There is postulation that the genetic changes may lead to an abnormality in the brain region, evidence for this postulation is that the areas of the brain that control facial expression and urination are in close proximity of each other. Other hypotheses think that the defective heparanase 2 protein may lead to problems with development of the urinary tract or with muscle function in the face and bladder.
Urofacial syndrome ( or hydronephrosis with peculiar facial expression), is an autosomal recessive congenital disorder characterized by inverted facial expressions in association with obstructive disease of the urinary tract. The inverted facial expression presented by children with this syndrome allows for early detection of the syndrome, this inverted smile is easy to see when the child is smiling and laughing. Early detection is vital for establishing a better prognosis as urinary related problems associated with this disease can cause harm if left untreated. Incontinence is another easily detectable symptom of the syndrome that is due to detrusor-sphincter discoordination, although it can easily be mistaken for pyelonephritis.
It may be associated with "HPSE2".
Trisomy 8, also known as Warkany syndrome 2, is a human chromosomal disorder caused by having three copies (trisomy) of chromosome 8. It can appear with or without mosaicism.
Microlissencephaly is listed in Orphanet database as a rare disease. There is no much information available about the epidemiology of microlissencepahly in literature. A PhD thesis has estimated the prevalence of microlissencepahly in South–Eastern Hungary between July 1992 and June 2006 to be a case every 91,000 live births (0.11:10,000).
Affected male and carrier female dogs generally begin to show signs of the disease at two to three months of age, with proteinuria. By three to four months of age, symptoms include for affected male dogs: bodily wasting and loss of weight, proteinuria & hypoalbuminemia. Past nine months of age, hypercholesterolemia may be seen. In the final stages of the disease, at around 15 months of age for affected males, symptoms are reported as being renal failure, hearing loss and death. Since the condition is genetically dominant, diagnosis would also include analysis of the health of the sire and dam of the suspected affected progeny if available.
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. The various types of familial hyperaldosteronism have different genetic causes. Familial hyperaldosteronism type I is caused by the abnormal joining together (fusion) of two similar genes called CYP11B1 and CYP11B2, which are located close together on chromosome 8. These genes provide instructions for making two enzymes that are found in the adrenal glands.
The CYP11B1 gene provides instructions for making an enzyme called 11-beta-hydroxylase. This enzyme helps produce hormones called cortisol and corticosterone. The CYP11B2 gene provides instructions for making another enzyme called aldosterone synthase, which helps produce aldosterone. When CYP11B1 and CYP11B2 are abnormally fused together, too much aldosterone synthase is produced. This overproduction causes the adrenal glands to make excess aldosterone, which leads to the signs and symptoms of familial hyperaldosteronism type I.
Familial hyperaldosteronism type III is caused by mutations in the KCNJ5 gene. The KCNJ5 gene provides instructions for making a protein that functions as a potassium channel, which means that it transports positively charged atoms (ions) of potassium into and out of cells. In the adrenal glands, the flow of ions through potassium channels produced from the KCNJ5 gene is thought to help regulate the production of aldosterone. Mutations in the KCNJ5 gene likely result in the production of potassium channels that are less selective, allowing other ions (predominantly sodium) to pass as well. The abnormal ion flow results in the activation of biochemical processes (pathways) that lead to increased aldosterone production, causing the hypertension associated with familial hyperaldosteronism type III.
The genetic cause of familial hyperaldosteronism type II is unknown.
The incidence of SIADH rises with increasing age. Residents of nursing homes are at highest risk.
Samoyed Hereditary Glomerulopathy is caused by a nonsense mutation in codon 1027 of the COL4A5 gene on the X chromosome (glycine to stop codon), which is similar to Alport's syndrome in humans. The disease is simply inherited, X-linked dominant, with males generally having more severe symptoms than females. Clinically, from the age of three to four months, proteinuria in both sexes is seen. In dogs older than this, renal failure in combination with more or less pronounced hearing loss occurs swiftly, and death at the age of 8 to 15 months is expected. In heterozygous females, whereby only one of the two X chromosomes carry the mutation, the disease develops slowly.
The disease is specific to the Samoyed in that, the Samoyed, is the only breed of dog to show the more rapid progression to renal failure and death, as well as affecting males to a much more severe degree than females. The Samoyed, however is not the only breed of dog to suffer from life-threatening renal diseases. Proteinuria has been found consistently in Samoyeds, Doberman Pinschers, and Cocker spaniels.
The human GALK1 gene contains 8 exons and spans approximately 7.3 kb of genomic DNA. The GALK1 promoter was found to have many features in common with other housekeeping genes, including high GC content, several copies of the binding site for the Sp1 transcription factor and the absence of TATA-box and CCAAT-box motifs typically present in eukaryotic polymerase II promoters. Analysis by 5-prime-RACE PCR indicated that the GALK1 mRNA is heterogeneous at the 5-prime end, with transcription sites occurring at many locations between 21 and 61 bp upstream of the ATG start site of the coding region. In vitro translation experiments of the GALK1 cDNA indicated that the protein is cytosolic and not associated with endoplasmic reticulum membrane.