Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Every infectious agent is different, but in general, slow viruses:
Additionally, the immune system seems to plays a limited role, or no role, in protection from these slow viruses. This may be in part because the host has acclimated to the virus, or more likely because the host must be immunocompromised in order for many of these slow virus infections to emerge, so the immune system is at a disadvantage from the start.
A slow virus is a virus, or a viruslike agent, etiologically associated with a disease, having a long incubation period of months to years and then a gradual onset of symptoms which progress slowly but irreversibly and terminate in a severe compromised state or, more commonly, death.
A slow virus disease is a disease that, after an extended period of latency, follows a slow, progressive course spanning months to years, frequently involving the central nervous system and ultimately leading to death. Examples include the Visna-Maedi virus, in the genus Lentivirus (family Retroviridae), that causes encephalitis and chronic pneumonitis in sheep, and subacute sclerosing panencephalitis which is apparently caused by the measles virus, as well as Paget's Disease of Bone (Osteitis Deformans) which is associated with paramyxoviridae, especially RSV and Rubeola (Measles).
A vaccine is available in the UK and Europe, however in laboratory tests it is not possible to distinguish between antibodies produced as a result of vaccination and those produced in response to infection with the virus. Management also plays an important part in the prevention of EVA.
Prevention is effected via quarantine, inoculation with live modified virus vaccine and control of the midge vector, including inspection of aircraft.
The virus is most often spread by person to person contact with the stool or saliva of the infected person. Two types of vaccines have been developed to prevent the occurrence and spread of the poliomyelitis virus. The first is an inactivated, or killed, form of the virus and the second is an attenuated, or weakened, form of the virus. The development of vaccines has successfully eliminated the disease from the United States. There are continued vaccination efforts in the U.S. to maintain this success rate as this disease still occurs in some areas of the world.
There is currently no specific treatment for the virus. A vaccine is available, but only experimentally. It has not been released to the public due to the risk it poses to already exposed birds.
Therapeutic intervention is limited to treating secondary infections. The individual bird can sometimes recover, but this is rare. If only the feathers are affected and the bird suffers no other symptoms, it can usually experience an acceptable quality of life. But if the bird's beak or nails are affected, veterinarians will recommend euthanasia.
The management of the disease lies thus mostly in prevention. Every new bird that enters a pen with other birds should be quarantined first and be tested for BFDV. Birds which are known carriers should not be introduced into new pens, especially not if those contain young birds.
EVA is caused by an arterivirus called equine arteritis virus (EAV). Arteriviruses are small, enveloped, animal viruses with an icosahedral core containing a positive-sense RNA genome. As well as equine arteritis virus the Arterivirus family includes porcine reproductive and respiratory syndrome virus (PRRSV), lactate dehydrogenase elevating virus (LDV) of mice and simian haemorrhagic fever virus (SHFV).
There are a number of routes of transmission of the virus. The most frequent is the respiratory route. The virus can also be spread by the venereal route, including by artificial insemination. Stallions may become carriers.
Clinical symptoms of viral infection include external hemorrhaging, pale gills, and ascites. In some cases, mortality can occur without any apparent clinical signs of the disease. The virus has been found in high concentrations in the liver and kidney, but lower numbers of virions have been isolated from the spleen. The virus has been shown to persist subclinically in fish populations up to 10 weeks following experimental infection. Currently efforts have been made to prevent infection by the virus through the development of DNA vaccines and immunostimulatory therapeutics.
The U.S. Centers for Disease Control and Prevention (CDC) publishes a journal "Emerging Infectious Diseases" that identifies the following factors contributing to disease emergence:
- Microbial adaption; e.g. genetic drift and genetic shift in Influenza A
- Changing human susceptibility; e.g. mass immunocompromisation with HIV/AIDS
- Climate and weather; e.g. diseases with zoonotic vectors such as West Nile Disease (transmitted by mosquitoes) are moving further from the tropics as the climate warms
- Change in human demographics and trade; e.g. rapid travel enabled SARS to rapidly propagate around the globe
- Economic development; e.g. use of antibiotics to increase meat yield of farmed cows leads to antibiotic resistance
- Breakdown of public health; e.g. the current situation in Zimbabwe
- Poverty and social inequality; e.g. tuberculosis is primarily a problem in low-income areas
- War and famine
- Bioterrorism; e.g. 2001 Anthrax attacks
- Dam and irrigation system construction; e.g. malaria and other mosquito borne diseases
Paravaccinia virus originates from livestock infected with bovine papular stomatitis. When a human makes physical contact with the livestock's muzzle, udders, or an infected area, the area of contact will become infected. Livestock may not show symptoms of bovine papular stomatitis and still be infected and contagious. Paravaccinia can enter the body though all pathways including: skin contact by mechanical means, through the respiratory tract, or orally. Oral or respiratory contraction may be more likely to cause systemic symptoms such as lesions across the whole body
A person who has not previously been infected with paravaccinia virus should avoid contact with infected livestock to prevent contraction of disease. There is no commercially available vaccination for cattle or humans against paravaccinia. However, following infection, immunization has been noted in humans, making re-infection difficult. Unlike other pox viruses, there is no record of contracting paravaccinia virus from another human. Further, cattle only show a short immunization after initial infection, providing opportunity to continue to infect more livestock and new human hosts.
PBFD has the potential to become a major threat to all species of wild parrots and to modern aviculture, due to international legal and illegal bird trade. Cases of PBFD have now been reported in at least 78 psittacine species. At least 38 of 50 Australian native species are affected by PBFD, both captive and in the wild. In 2004, PBFD was listed as a key threatening process by the Australian Commonwealth Government for the survival of five endangered species, including one of the few remaining species of migratory parrots, the orange-bellied parrot, of which only an estimated 60 mating pairs remained in 2006.
Bluetongue disease is a non-contagious, insect-borne, viral disease of ruminants, mainly sheep and less frequently cattle, goats, buffalo, deer, dromedaries, and antelope. It is caused by the Bluetongue virus (BTV). The virus is transmitted by the midge "Culicoides imicola", "Culicoides variipennis", and other culicoids.
Foot-and-mouth disease or hoof-and-mouth disease (Aphthae epizooticae) is an infectious and sometimes fatal viral disease that affects cloven-hoofed animals, including domestic and wild bovids. The virus causes a high fever for approximately two to six days, followed by blisters inside the mouth and on the feet that may rupture and cause lameness.
Foot-and-mouth disease (FMD) has very severe implications for animal farming, since it is highly infectious and can be spread by infected animals comparatively easily through contact with contaminated farming equipment, vehicles, clothing, feed and by domestic and wild predators. Its containment demands considerable efforts in vaccination, strict monitoring, trade restrictions, quarantines and occasionally the culling of animals.
Susceptible animals include cattle, water buffalo, sheep, goats, pigs, antelope, deer, and bison. It has also been known to infect hedgehogs and elephants; llamas and alpacas may develop mild symptoms, but are resistant to the disease and do not pass it on to others of the same species. In laboratory experiments, mice, rats, and chickens have been successfully infected by artificial means, but they are not believed to contract the disease under natural conditions. Humans are very rarely infected.
The virus responsible for the disease is a picornavirus, the prototypic member of the genus "Aphthovirus". Infection occurs when the virus particle is taken into a cell of the host. The cell is then forced to manufacture thousands of copies of the virus, and eventually bursts, releasing the new particles in the blood. The virus is genetically highly variable, which limits the effectiveness of vaccination.
The cause of PML is a type of polyomavirus called the JC virus (JCV), after the initials of the person from whose tissue the virus was first successfully cultured. Recent publications indicate 39% to 58% of the general population are seropositive for antibodies to JCV, indicating current or previous infection with the virus. Other publications put the percentage at 70% to 90% of the general population. JCV causes persistent asymptomatic infection in approximately one-third of the adult population, based on viral shedding into the urine from the site of asymptomatic infection in the kidney. The virus causes disease only when the immune system has been severely weakened.
Spring viraemia of carp virus has been shown to infect a wide variety of fish species including silver carp, grass carp, crucian carp, and bighead carp. It has also been shown experimentally to infect other fish species including northern pike, guppies, zebrafish, and pumpkinseed. It is considered to be a major threat to naive fish populations, especially farmed fish including ornamental koi and common carp.
PML is most common in people with HIV1 infection; prior to the advent of effective antiretroviral therapy, as many as 5% of people with AIDS eventually developed PML. It is unclear why PML occurs more frequently in AIDS than in other immunosuppressive conditions; some research suggests the effects of HIV on brain tissue, or on JCV itself, make JCV more likely to become active in the brain and increase its damaging inflammatory effects.
PML can occur in people on chronic immunosuppressive therapy like corticosteroids, for organ transplant, in people with cancer (such as Hodgkin’s disease, leukemia, or lymphoma) and individuals with autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, psoriasis, sarcoidosis, and systemic lupus erythematosus with or without biological therapies that depress the immune response and allow JC virus reactivation. These therapies include efalizumab, belatacept, rituximab, natalizumab, infliximab, cytotoxic chemotherapy, corticosteroids, and various transplant drugs such as tacrolimus.
The mortality rate of chikungunya is slightly less than 1 in 1000. Those over the age of 65, neonates, and those with underlying chronic medical problems are most likely to have severe complications. Neonates are vulnerable as it is possible to vertically transmit chikungunya from mother to infant during delivery, which results in high rates of morbidity, as infants lack fully developed immune systems. The likelihood of prolonged symptoms or chronic joint pain is increased with increased age and prior rheumatological disease.
Prevention strategies include reducing the breeding of midges through source reduction (removal and modification of breeding sites) and reducing contact between midges and people. This can be accomplished by reducing the number of natural and artificial water-filled habitats and encourage the midge larvae to grow.
Oropouche fever is present in epidemics so the chances of one contracting it after being exposed to areas of midgets or mosquitoes is rare.
Research into the mechanism of this disease stalled with the development of the vaccines in the mid-twentieth century. However, with the recent identification of the cell surface receptor CD155 new interest has resurfaced in this disease. Experiments on transgenic mice are investigating the initial sites of viral replication in the host and how the virus moves from the bloodstream into the central nervous system. Research into the host range of the virus has also been of interest. The host range of a virus is determined by the interaction of the virus with host cellular receptors such as CD155. Comparison of the amino acid sequence in the binding domain of the host cell receptor is highly variable among mammalian species. Rapid changes in the sequence of the binding domain have restricted the host range of the poliovirus. Targeting of the brain and spinal cord have also come under investigation. The restricted tropism maybe due to organ specific differences in the initiation of translation by the virus internal ribosome entry site.
The virus’s transmission cycle in the wild is similar to the continuous sylvatic cycle of yellow fever and is believed to involve wild primates (monkeys) as the reservoir and the tree-canopy-dwelling "Haemagogus" species mosquito as the vector. Human infections are strongly associated with exposure to humid tropical forest environments. Chikungunya virus is closely related, producing a nearly indistinguishable, highly debilitating arthralgic disease. On February 19, 2011, a Portuguese-language news source reported on a recent survey which revealed Mayaro virus activity in Manaus, Amazonas State, Brazil. The survey studied blood samples from 600 residents of Manaus who had experienced a high fever; Mayaro virus was identified in 33 cases. Four of the cases experienced mild hemorrhagic (bleeding) symptoms, which had not previously been described in Mayaro virus disease. The report stated that this outbreak is the first detected in a metropolitan setting, and expressed concern that the disease might be adapting to urban species of mosquito vectors, which would make it a risk for spreading within the country. A study published in 1991 demonstrated that a colonized strain of Brazilian "Aedes albopictus" was capable of acquiring MAYV from infected hamsters and subsequently transmitting it and a study published in October 2011 demonstrated that "Aedes aegypti" can transmit MAYV, supporting the possibility of wider transmission of Mayaro virus disease in urban settings.
One study has focused on identifying OROV through the use of RNA extraction from reverse transcription-polymerase chain reaction. This study revealed that OROV caused central nervous system infections in three patients. The three patients all had meningoencephalitis and also showed signs of clear lympho-monocytic cellular pattern in CSF, high protein, and normal to slightly decreased glucose levels indicating they had viral infections. Two of the patients already had underlying infections that can effect the CNS and immune system and in particular one of these patients has HIV/AIDS and the third patient has neurocysticercosis. Two patients were infected with OROV developed meningitis and it was theorized that this is due to them being immunocompromised. Through this it was revealed that it's possible that the invasion of the central nervous system by the oropouche virus can be performed by a pervious blood-brain barrier damage.
Mosquitoes, primarily from the genus "Culex", become infected by feeding on birds infected with the Saint Louis encephalitis virus. Infected mosquitoes then transmit the Saint Louis encephalitis virus to humans and animals during the feeding process. The Saint Louis encephalitis virus grows both in the infected mosquito and the infected bird, but does not make either one sick. Only infected mosquitoes can transmit Saint Louis encephalitis virus. Once a human has been infected with the virus it is not transmissible from that individual to other humans.
Paravaccinia is a member of the Parapoxvirus family. It has a cylindrical body about 140 X 310 nm in size, with convex ends covered in a criss-cross pattern of rope like structures. The virus is resistant to cold, dehydration, and temperatures up to 56 °C. Upon injecting a cell with its genome, the virus begins transcription in the cytoplasm using viral RNA polymerase. As the virus progresses through the cell, the host begins to replicate the viral genome between 140 minutes and 48 hours.
Viral encephalitis is a type of encephalitis caused by a virus.
It is unclear if anticonvulsants used in people with viral encephalitis would prevent seizures.
There are no vaccines or any other treatments specifically for Saint Louis encephalitis virus, although one study showed that early use of interferon-alpha2b may decrease the severity of complications.