Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In general, SCFE is caused by increased force applied across the epiphysis, or a decrease in the resistance within the physis to shearing. No single cause accounts for SCFEs, as several factors play a role in the development of a SCFE, particularly mechanical and endocrine (hormone-related) factors. Mechanical risk factors include obesity, coxa profunda, femoral or acetabular retroversion. Obesity is the most significant risk factor. In 65 percent of cases of SCFE, the person is over the 95th percentile for weight. Common misconception is heredity. Majority of cause is due to being overweight. Endocrine diseases also contribute, such as hypothyroidism, hypopituitarism, and renal osteodystrophy.
A Salter–Harris fracture is a fracture that involves the epiphyseal plate or growth plate of a bone. It is a common injury found in children, occurring in 15% of childhood long bone fractures.
Colles fractures occur in all age groups, although certain patterns follow an age distribution.
- In the elderly, because of the weaker cortex, the fracture is more often extra-articular.
- Younger individuals tend to require a higher energy force to cause the fracture and tend to have more complex intra-articular fractures. In children with open epiphyses, an equivalent fracture is the "epiphyseal slip", as can be seen in other joints, such as a slipped capital femoral epiphysis in the hip. This is a Salter I or II fracture with the deforming forces directed through the weaker epiphyseal plate.
- More common in women because of post-menopausal osteoporosis.
SCFE affects approximately 1-10 per 100,000 children. The incidence varies by geographic location, season of the year, and ethnicity. In eastern Japan, the incidence is 0.2 per 100,000 and in the northeastern U.S. it is about 10 per 100,000. Africans and Polynesians have higher rates of SCFE.
SCFEs are most common in adolescents 11–15 years of age, and affects boys more frequently than girls (male 2:1 female). It is strongly linked to obesity, and weight loss may decrease the risk. Other risk factors include: family history, endocrine disorders, radiation / chemotherapy, and mild trauma.
The left hip is more often affected than the right. Over half of cases may have involvement on both sides (bilateral).
There are nine types of Salter–Harris fractures; types I to V as described by Robert B Salter and W Robert Harris in 1963, and the rarer types VI to IX which have been added subsequently:
- Type I – transverse fracture through the growth plate (also referred to as the "physis"): 6% incidence
- Type II – A fracture through the growth plate and the metaphysis, sparing the epiphysis: 75% incidence, takes approximately 2–3 weeks or more in the spine to heal.
- Type III – A fracture through growth plate and epiphysis, sparing the metaphysis: 8% incidence
- Type IV – A fracture through all three elements of the bone, the growth plate, metaphysis, and epiphysis: 10% incidence
- Type V – A compression fracture of the growth plate (resulting in a decrease in the perceived space between the epiphysis and metaphysis on x-ray): 1% incidence
- Type VI – Injury to the peripheral portion of the physis and a resultant bony bridge formation which may produce an angular deformity (added in 1969 by Mercer Rang)
- Type VII – Isolated injury of the epiphyseal plate (VII–IX added in 1982 by JA Ogden)
- Type VIII – Isolated injury of the metaphysis with possible impairment of endochondral ossification
- Type IX – Injury of the periosteum which may impair intramembranous ossification
Coxa valga is a deformity of the hip where the angle formed between the head and neck of the femur and its shaft is increased, usually above 135 degrees. It is caused by a slipped epiphysis of the femoral head.
The differential diagnosis includes neuromuscular disorders (i.e. cerebral palsy, spinal dysraphism, poliomyelitis), skeletal dysplasias, and juvenile idiopathic arthritis.
A Colles' fracture is a type of fracture of the distal forearm in which the broken end of the radius is bent backwards. Symptoms may include pain, swelling, deformity, and bruising. Complications may include damage to the median nerve.
It is typically occurs as a result of a fall on an outstretched hand. Risk factors include osteoporosis. The diagnosis may be confirmed with X-rays. The tip of the ulna may also be broken.
Treatment may include casting or surgery. Reduction and casting is possible in the majority of cases in people over the age of 50. Pain management can be achieved during the reduction with procedural sedation and analgesia or a hematoma block. A year or two may be required for healing to occur.
About 15% of people have a Colles' fracture at some point in time. They occur more commonly in young adults and older people. Women are more often affected than men. The fracture is named after Abraham Colles who described it in 1814.
Fairbank's disease or multiple epiphyseal dysplasia (MED) is a rare genetic disorder (dominant form: 1 in 10,000 births) that affects the growing ends of bones. Long bones normally elongate by expansion of cartilage in the growth plate (epiphyseal plate) near their ends. As it expands outward from the growth plate, the cartilage mineralizes and hardens to become bone (ossification). In MED, this process is defective.
Pseudoachondroplasia is inherited in an autosomal dominant manner, though one case of a very rare autosomal recessive form has been documented. The offspring of affected individuals are at 50% risk of inheriting the mutant allele. Prenatal testing by molecular genetic examination is available if the disease-causing mutation has been identified in an affected family member (Hecht et al. 1995).
Multiple epiphyseal dysplasia (MED) encompasses a spectrum of skeletal disorders, most of which are inherited in an autosomal dominant form. However, there is an autosomal recessive form.
Associated genes include COL9A1, COL9A2, COL9A3, COMP, and MATN3.
Types include:
Pseudoachondroplasia is an inherited disorder of bone growth. It is a genetic autosomal dominant disorder. It is generally not discovered until 2-3 years of age, since growth is normal at first. Pseudoachondroplasia is usually first detected by a drop of linear growth in contrast to peers, a curious, waddling gait or arising lower limb deformities.
Pseudoachondroplasia (also known as PSACH, Pseudoachondroplastic dysplasia, and Pseudoachondroplastic spondyloepiphyseal dysplasia syndrome) is an osteochondrodysplasia that results in mild to severely short stature due to the inhibition of skeletal growth primarily in the limbs. Though similarities in nomenclature may cause confusion, Pseudoachondroplasia should not be confused with achondroplasia, which is a clinically and genetically distinct skeletal dysplasia. Pseudoachondroplasia is caused by a heterozygous mutation in the gene encoding cartilage oligomeric matrix protein COMP. Mutation in the COMP gene can also multiple epiphyseal dysplasia. Despite the radioclinical similarities between pseudoachondroplasia and multiple epiphyseal dysplasia, the latter is less severe.132400
Accidental or deliberate physical trauma may result in either a fracture, muscle bruising, or a contusion. It is the leading cause of a limp. Deliberate abuse is important to consider.
Other infections that classically lead to a limp include Lyme disease (a bacterial infection spread by a deer tick) and osteomyelitis (an infection of the bone).
Osteochondromas or osteocartilaginous exostoses are the most common benign tumors of the bones.
The tumors take the form of cartilage-capped bony projections or outgrowth on the surface of bones (exostoses). It is characterized as a type of overgrowth that can occur in any bone where cartilage forms bone. Tumors most commonly affect long bones in the leg, pelvis, or scapula (shoulder blade). Development of osteochondromas take place during skeletal growth between the ages of 13 and 15 and ceases when the growth plate fuses at puberty. They arise within the first three decades of life affecting children and adolescents.
Osteochondromas occur in 3% of the general population and represent 35% of all benign tumors and 8% of all bone tumors. Majority of these tumors are solitary non-hereditary lesions and approximately 15% of osteochondromas occur as hereditary multiple osteochondromas (HMOs). They can occur as a solitary lesion (solitary osteochondroma) or multiple lesions within the context of the same bone (Multiple Osteochondroma). Osteochondromas do not result from injury and the exact cause remains unknown. Recent research has indicated that multiple osteochondromas is an autosomal dominant inherited disease. Germ line Mutations in "EXT1" and "EXT2" genes located on chromosomes 8 and 11 have been associated with the cause of the disease.
The treatment choice for osteochondroma is surgical removal of solitary lesion or partial excision of the outgrowth, when symptoms cause motion limitations or nerve and blood vessel impingements.
The vertebral column, also known as the backbone or spine, is part of the axial skeleton. The vertebral column is the defining characteristic of a vertebrate, in which the notochord (a flexible rod of uniform composition) found in all chordates has been replaced by a segmented series of bones—vertebrae separated by intervertebral discs. The vertebral column houses the spinal canal, a cavity that encloses and protects the spinal cord.
There are about 50,000 species of animals that have a vertebral column. The human vertebral column is one of the most-studied examples.
A recent article in 2015 reported a persistent notochord in a fetus at 23 weeks of gestation. The fetus had an abnormal spine, shortened long bones and a left clubfoot. After running postmortem tests and ultrasound, the researchers believed that the fetus suffered from hypochondrogenesis. Hypochondrogenesis is caused when type II collagen is abnormally formed due to a mutation in the COL2A1 gene. Normally, the cartilaginous notochord develops into the bony vertebrae in a human body. The COL2A1 gene results in malformed type II collagen, which is essential in the transition from collagen to bone. This is the first time that researchers found a persistent notochord in a human body due to a COL2A1 mutation.
One person in every 100,000 is affected. Ollier disease is not normally diagnosed until toddler years because it is not very visible.
Ollier disease carries a high risk of skeletal, visceral and brain malignancy which occurs in approximately 25% of patients. Juvenile granulosa cell tumour has been associated with the disease. The incidence of secondary chondrosarcoma in Ollier disease is not known, but may be as high as 25%, pelvis and shoulder girdle being the commonest locations. A related disorder called Maffucci syndrome named after Angelo Maffucci is characterized by enchondromas associated with multiple hemangiomas which usually occur in the hands and feet. Maffucci syndrome carries a higher risk for cancer.
Limited normal functions and movements are caused by osteochondromas growing slowly and inwardly. The majority of osteochondromas are symptomless and are found incidentally. Each individual with osteochondroma may experience symptoms differently and most of the time individuals will experience no symptoms at all. Some of the most common symptoms are a hard immobile painless palpable mass, adjacent muscle soreness, and pressure or irritation with heavy exercising.
Major symptoms arise when complications such as fractures, bone deformity or mechanical joint problems occur. If the occurrence of an osteochondroma is near a nerve or a blood vessel, the affected limb can experience numbness, weakness, loss of pulse or color change. Periodic changes in the blood flow can also take place. Approximately 20% of patients experiencing nerve compression commonly acknowledge vascular compression, arterial thrombosis, aneurysm, and pseudoaneurysm. Formation of pseudoaneurysm and venous thrombosis lead to claudication, pain, acute ischemia, and symptoms of phlebitis. If the tumor is found under a tendon, it can cause pain during movement causing restriction of joint motion. Pain can also occur due to bursal inflammation, swelling or fracture at the base of the tumor stalk. Some of the clinical signs and symptoms of malignant osteochondroma are pain, swelling, and mass enlargement.
Currently, the genetic or environmental factors that predispose an individual for chondroblastoma are not well known or understood. Chondroblastoma affects males more often than females at a ratio of 2:1 in most clinical reports. Furthermore, it is most often observed in young patients that are skeletally immature, with most cases diagnosed in the second decade of life. Approximately 92% of patients presenting with chondroblastoma are younger than 30 years. There is no indication of a racial predilection for chondroblastoma.
Spondyloepiphyseal dysplasia congenita (abbreviated to SED more often than SDC) is a rare disorder of bone growth that results in dwarfism, characteristic skeletal abnormalities, and occasionally problems with vision and hearing. The name of the condition indicates that it affects the bones of the spine (spondylo-) and the ends of bones (epiphyses), and that it is present from birth (congenital). The signs and symptoms of spondyloepiphyseal dysplasia congenita are similar to, but milder than, the related skeletal disorders achondrogenesis type 2 and hypochondrogenesis. Spondyloepiphyseal dysplasia congenita is a subtype of collagenopathy, types II and XI.
Spondyloepiphyseal dysplasia congenita is one of a spectrum of skeletal disorders caused by mutations in the "COL2A1" gene. The protein made by this gene forms type II collagen, a molecule found mostly in cartilage and in the clear gel that fills the eyeball (the vitreous). Type II collagen is essential for the normal development of bones and other connective tissues. Mutations in the "COL2A1" gene interfere with the assembly of type II collagen molecules, which prevents bones from developing properly and causes the signs and symptoms of this condition.
Spondyloepiphyseal dysplasia congenita is inherited in an autosomal dominant pattern, which means one copy of the altered gene is sufficient to cause the disorder.
Kniest Dysplasia is an autosomal dominant condition. This means that the person only needs to have one copy of the mutated gene in order to have the condition. People with a family history are at a higher risk of having the disease than people with no family history. A random mutation in the gene can cause a person with no family history to also have the condition.
The frequency of this disorder is unknown, but it is very rare. Only a few families with the condition have been reported.
This condition is one of a spectrum of skeletal disorders caused by mutations in the "COL2A1" gene. The protein made by this gene forms type II collagen, a molecule found mostly in cartilage and in the clear gel that fills the eyeball (the vitreous). Type II collagen is essential for the normal development of bones and other connective tissues. Mutations in the "COL2A1" gene interfere with the assembly of type II collagen molecules, which prevents bones from developing properly and causes the signs and symptoms of this condition.
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene is sufficient to cause the disorder.