Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
As an overall medical condition PVCs are normally not very harmful to patients that experience them, but frequent PVCs may put patients at increased risk of developing arrhythmias or cardiomyopathy, which can greatly impact the functioning of the heart over the span of that patient's life. On a more serious and severe scale, frequent PVCs can accompany underlying heart disease and lead to chaotic, dangerous heart rhythms and possibly sudden cardiac death.
Asymptomatic patients that do not have heart disease have long-term prognoses very similar to the general population, but asymptomatic patients that have ejection fractions greater than 40% have a 3.5% incidence of sustained ventricular tachycardia or cardiac arrest. One drawback comes from emerging data that suggests very frequent ventricular ectopy may be associated with cardiomyopathy through a mechanism thought to be similar to that of chronic right ventricular pacing associated cardiomyopathy. Patients that have underlying chronic structural heart disease and complex ectopy, mortality is significantly increased.
In meta-analysis of 11 studies, people with frequent PVC (≥1 time during a standard electrocardiographic recording or ≥30 times over a 1-hour recording) had risk of cardiac death 2 times higher than persons without frequent PVC. Although most studies made attempts to exclude high-risk subjects, such as those with histories of cardiovascular disease, they did not test participants for underlying structural heart disease.
In a study of 239 people with frequent PVCs (>1000 beats/day) and without structural heart disease (i.e. in the presence of normal heart function) there were no serious cardiac events through 5.6 years on average, but there was correlation between PVC prevalence and decrease of ejection fraction and increase of left ventricular diastolic dimension. In this study absence of heart of disease was excluded by echocardiography, cardiac magnetic resonance imaging in 63 persons and Holter monitoring.
Another study has suggested that in the absence of structural heart disease even frequent (> 60/h or 1/min) and complex PVCs are associated with a benign prognosis. It was study of 70 people followed by 6.5 years on average. Healthy status was confirmed by extensive noninvasive cardiologic examination, although cardiac catheterization of a subgroup disclosed serious coronary artery disease in 19%. Overall survival was better than expected.
On the other hand, the Framingham Heart Study reported that PVCs in apparently healthy people were associated with a twofold increase in the risk of all-cause mortality, myocardial infarction and cardiac death. In men with coronary heart disease and in women with or without coronary heart disease, complex or frequent arrhythmias were not associated with an increased risk. The at-risk people might have subclinical coronary disease. These Framingham results have been criticised for the lack of rigorous measures to exclude the potential confounder of underlying heart disease.
In the ARIC study of 14,783 people followed for 15 to 17 years those with detected PVC during 2 minute ECG, and without hypertension or diabetes on the beginning, had risk of stroke increased by 109%. Hypertension or diabetes, both risk factors for stroke, did not change significantly risk of stroke for people with PVC. It is possible that PVCs identified those at risk of stroke with blood pressure and impaired glucose tolerance on a continuum of risk below conventional diagnostic thresholds for hypertension and diabetes. Those in ARIC study with any PVC had risk of heart failure increased by 63% and were >2 times as likely to die due to coronary heart disease (CHD). Risk was also higher for people with or without baseline CHD.
In the Niigata study of 63,386 people with 10-year follow-up period those with PVC during a 10-second recording had risk of atrial fibrillation increased nearly 3 times independently from risk factors: age, male sex, body mass index, hypertension, systolic and diastolic blood pressure, and diabetes.
Reducing frequent PVC (>20%) by antiarrhythmic drugs or by catheter ablation significantly improves heart performance.
Recent studies have shown that those subjects who have an extremely high occurrence of PVCs (several thousand a day) can develop dilated cardiomyopathy. In these cases, if the PVCs are reduced or removed (for example, via ablation therapy) the cardiomyopathy usually regresses.
Also, PVCs can permanently cease without any treatment, in a material percentage of cases.
The following stimulants, conditions and triggers may increase your risk of the more frequent occurrence of premature ventricular contractions:
- Caffeine, tobacco and alcohol
- Exercise
- High blood pressure (hypertension)
- Anxiety
- Underlying heart disease, including congenital heart disease, coronary artery disease, heart attack, heart failure and a weakened heart muscle (cardiomyopathy)
- African American ethnicity- increased the risk of PVCs by 30% in comparison with the risk in white individuals
- Male sex
- Lower serum magnesium or potassium levels
- Faster sinus rates
- A bundle-branch block on 12-lead ECG
- Hypomagnesemia
- Hypokalemia
Sudden cardiac arrest is the leading cause of death in the industrialised world. It exacts a significant mortality with approximately 70,000 to 90,000 sudden cardiac deaths each year in the United Kingdom, and survival rates are only 2%. The majority of these deaths are due to ventricular fibrillation secondary to myocardial infarction, or "heart attack". During ventricular fibrillation, cardiac output drops to zero, and, unless remedied promptly, death usually ensues within minutes.
Rearrest may reduce the likelihood of survival when compared to patients who have had just one episode of cardiac arrest. Overall resuscitation rates have been estimated to be about 34%, however survival to hospital discharge rates are as low as 7%. This phenomenon may be contributed to rearrest.
A recent study by Salcido et al. (2010) ascertained rearrest in all initial and rearrest rhythms treated by any level of Emergency Medical Service (EMS), finding a rearrest rate of 36% and a lower but not significantly different rate of survival to hospital discharge in cases with rearrest compared to those without rearrest.
It can result in many abnormal heart rhythms (arrhythmias), including sinus arrest, sinus node exit block, sinus bradycardia, and other types of bradycardia (slow heart rate).
Sick sinus syndrome may also be associated with tachycardias (fast heart rate) such as atrial tachycardia (PAT) and atrial fibrillation. Tachycardias that occur with sick sinus syndrome are characterized by a long pause after the tachycardia. Sick sinus syndrome is also associated with azygos continuation of interrupted inferior vena cava.
In otherwise healthy patients, occasional premature atrial contractions are a common and normal finding and do not indicate any particular health risk. Rarely, in patients with other underlying structural heart problems, PACs can trigger a more serious arrhythmia such as atrial flutter or atrial fibrillation. In otherwise healthy people, PACs usually disappear with adolescence.
Ouabain infusion decreases ventricular escape time and increases ventricular escape rhythm. However, a high dose of ouabain can lead to ventricular tachycardia.
Ventricular fibrillation has been described as "chaotic asynchronous fractionated activity of the heart" (Moe et al. 1964). A more complete definition is that ventricular fibrillation is a "turbulent, disorganized electrical activity of the heart in such a way that the recorded electrocardiographic deflections continuously change in shape, magnitude and direction".
Ventricular fibrillation most commonly occurs within diseased hearts, and, in the vast majority of cases, is a manifestation of underlying ischemic heart disease. Ventricular fibrillation is also seen in those with cardiomyopathy, myocarditis, and other heart pathologies. In addition, it is seen with electrolyte imbalance, overdoses of cardiotoxic drugs, and following near drowning or major trauma. It is also notable that ventricular fibrillation occurs where there is no discernible heart pathology or other evident cause, the so-called idiopathic ventricular fibrillation.
Idiopathic ventricular fibrillation occurs with a reputed incidence of approximately 1% of all cases of out-of-hospital arrest, as well as 3%-9% of the cases of ventricular fibrillation unrelated to myocardial infarction, and 14% of all ventricular fibrillation resuscitations in patients under the age of 40. It follows then that, on the basis of the fact that ventricular fibrillation itself is common, idiopathic ventricular fibrillation accounts for an appreciable mortality. Recently described syndromes such as the Brugada Syndrome may give clues to the underlying mechanism of ventricular arrhythmias. In the Brugada syndrome, changes may be found in the resting ECG with evidence of right bundle branch block (RBBB) and ST elevation in the chest leads V1-V3, with an underlying propensity to sudden cardiac death.
The relevance of this is that theories of the underlying pathophysiology and electrophysiology must account for the occurrence of fibrillation in the apparent "healthy" heart. It is evident that there are mechanisms at work that we do not fully appreciate and understand. Investigators are exploring new techniques of detecting and understanding the underlying mechanisms of sudden cardiac death in these patients without pathological evidence of underlying heart disease.
Familial conditions that predispose individuals to developing ventricular fibrillation and sudden cardiac death are often the result of gene mutations that affect cellular transmembrane ion channels. For example, in Brugada Syndrome, sodium channels are affected. In certain forms of long QT syndrome, the potassium inward rectifier channel is affected.
Hypertension, or abnormally high blood pressure, often signifies an elevated level of both psychological and physiological stress. Often, hypertension goes hand in hand with various atrial fibrillations including premature atrial contractions (PACs). Additional factors that may contribute to spontaneous premature atrial contractions could be:
- Increased age
- Abnormal body height
- History of cardiovascular disease (CV)
- Abnormal ANP levels
- Elevated cholesterol
Ventricular tachycardia can occur due to coronary heart disease, aortic stenosis, cardiomyopathy, electrolyte problems (e.g., low blood levels of magnesium or potassium), inherited channelopathies (e.g., long-QT syndrome), catecholaminergic polymorphic ventricular tachycardia, arrhythmogenic right ventricular dysplasia, or a heart attack.
In cardiology a ventricular escape beat is a self-generated electrical discharge initiated by, and causing contraction of, the ventricles of the heart; normally the heart rhythm is begun in the atria of the heart and is subsequently transmitted to the ventricles. The ventricular escape beat follows a long pause in ventricular rhythm and acts to prevent cardiac arrest. It indicates a failure of the electrical conduction system of the heart to stimulate the ventricles (which would lead to the absence of heartbeats, unless ventricular escape beats occur).
Most cases are fatal. Automated external defibrillators have helped increase the survival rate to 35%. Defibrillation must be started as soon as possible (within 3 minutes) for maximal benefit. Commotio cordis is the leading cause of fatalities in youth baseball in the US, with two to three deaths per year. It has been recommended that "communities and school districts reexamine the need for accessible automatic defibrillators and cardiopulmonary resuscitation-trained coaches at organized sporting events for children."
In the human heart the sinoatrial node is located at the top of the right atrium. The sinoatrial node is the first area of the heart to depolarize and to generate the action potential that leads to depolarization of the rest of the myocardium. Sinoatrial depolarization and subsequent propagation of the electrical impulse suppress the action of the lower natural pacemakers of the heart, which have slower intrinsic rates.
The accelerated idioventricular rhythm occurs when depolarization rate of a normally suppressed focus increases to above that of the "higher order" focuses (the sinoatrial node and the atrioventricular node). This most commonly occurs in the setting of a sinus bradycardia.
Accelerated idioventricular rhythm is the most common reperfusion arrhythmia in humans. However, ventricular tachycardia and ventricular fibrillation remain the most important causes of sudden death following spontaneous restoration of antegrade flow. Prior to the modern practice of percutaneous coronary intervention for acute coronary syndrome, pharmacologic thrombolysis was more common and accelerated idioventricular rhythms were used as a sign of successful reperfusion. It is considered a benign arrhythmia that does not require intervention, though atrioventricular dyssynchrony can cause hemodynamic instability, which can be treated through overdrive pacing or atropine.
Sinoatrial arrest (also known as sinus arrest or sinus pause) is a medical condition wherein the sinoatrial node of the heart transiently ceases to generate the electrical impulses that normally stimulate the myocardial tissues to contract and thus the heart to beat. It is defined as lasting from 2.0 seconds to several minutes. Since the heart contains multiple pacemakers, this interruption of the cardiac cycle generally lasts only a few seconds before another part of the heart, such as the atrio-ventricular junction or the ventricles, begins pacing and restores the heart action. This condition can be detected on an electrocardiogram (ECG) as a brief period of irregular length with no electrical activity before either the sinoatrial node resumes normal pacing, or another pacemaker begins pacing. If a pacemaker other than the sinoatrial node is pacing the heart, this condition is known as an escape rhythm. If no other pacemaker begins pacing during an episode of sinus arrest it becomes a cardiac arrest. This condition is sometimes confused with sinoatrial block, a condition in which the pacing impulse is generated, but fails to conduct through the myocardium. Differential diagnosis of the two conditions is possible by examining the exact length of the interruption of cardiac activity.
If the next available pacemaker takes over, it is in the following order:
1. Atrial escape (rate 60–80): originates within atria, not sinus node (normal P morphology is lost).
2. Junctional escape (rate 40–60): originates near the AV node; a normal P wave is not seen, may occasionally see a retrograde P wave.
3. Ventricular escape (rate 20–40): originates in ventricular conduction system; no P wave, wide, abnormal QRS.
Treatment includes stop medications that suppress the sinus node (beta blocker, Calcium channel blocker, digitalis); may need pacing.
Sinoatrial blocks are typically well-tolerated. They are not as serious as an AV block and most often do not require treatment. In some people, they can cause fainting, altered mental status, chest pain, hypoperfusion, and signs of shock. They can also lead to cessation of the SA node and more serious dysrhythmias. Emergency treatment, if deemed necessary, consists of administration of atropine sulfate or transcutaneous pacing.
Sick sinus syndrome is a relatively uncommon syndrome in the young and middle age population. Sick sinus syndrome is more common in elderly adults, where the cause is often a non-specific, scar-like degeneration of the cardiac conduction system. Cardiac surgery, especially to the atria, is a common cause of sick sinus syndrome in children.
Many conditions can cause third-degree heart block, but the most common cause is coronary ischemia. Progressive degeneration of the electrical conduction system of the heart can lead to third-degree heart block. This may be preceded by first-degree AV block, second-degree AV block, bundle branch block, or bifascicular block. In addition, acute myocardial infarction may present with third-degree AV block.
An "inferior wall myocardial infarction" may cause damage to the AV node, causing third-degree heart block. In this case, the damage is usually transitory. Studies have shown that third-degree heart block in the setting of an inferior wall myocardial infarction typically resolves within 2 weeks. The escape rhythm typically originates in the AV junction, producing a narrow complex escape rhythm.
An "anterior wall myocardial infarction" may damage the distal conduction system of the heart, causing third-degree heart block. This is typically extensive, permanent damage to the conduction system, necessitating a permanent pacemaker to be placed. The escape rhythm typically originates in the ventricles, producing a wide complex escape rhythm.
Third-degree heart block may also be congenital and has been linked to the presence of lupus in the mother. It is thought that maternal antibodies may cross the placenta and attack the heart tissue during gestation. The cause of congenital third-degree heart block in many patients is unknown. Studies suggest that the prevalence of congenital third-degree heart block is between 1 in 15,000 and 1 in 22,000 live births.
Hyperkalemia in those with previous cardiac disease and Lyme disease can also result in third-degree heart block.
Therapy may be directed either at terminating an episode of the abnormal heart rhythm or at reducing the risk of another VT episode. The treatment for stable VT is tailored to the specific person, with regard to how well the individual tolerates episodes of ventricular tachycardia, how frequently episodes occur, their comorbidities, and their wishes. Individuals suffering from pulseless VT or unstable VT are hemodynamically compromised and require immediate electric cardioversion to shock them out of the VT rhythm.
The prognosis of patients with complete heart block is generally poor without therapy. Patients with 1st and 2nd degree heart block are usually asymptomatic.
The overall chance of survival among those who have cardiac arrest outside hospital is 10%. Among those who have an out-of-hospital cardiac arrest, 70% occur at home and have a survival rate of 6%. For those who have an in-hospital cardiac arrest, survival rate is estimated to be 24%. Among children rates of survival is 3 to 16% in North America. For in hospital cardiac arrest survival to discharge is around 22% with many having a good neurological outcome.
Prognosis is typically assessed 72 hours or more after cardiac arrest. Rates of survival are better in those who someone saw collapse, got bystander CPR, or had either ventricular tachycardia or ventricular fibrillation when assessed. Survival among those with Vfib or Vtach is 15 to 23%. Women are more likely to survive cardiac arrest and leave hospital than men.
A 1997 review found rates of survival to discharge of 14% although different studies varied from 0-28%. In those over the age of 70 who have a cardiac arrest while in hospital, survival to hospital discharge is less than 20%. How well these individuals are able to manage after leaving hospital is not clear.
A study of survival rates from out-of-hospital cardiac arrest found that 14.6% of those who had received resuscitation by ambulance staff survived as far as admission to hospital. Of these, 59% died during admission, half of these within the first 24 hours, while 46% survived until discharge from hospital. This reflects an overall survival following cardiac arrest of 6.8%. Of these 89% had normal brain function or mild neurological disability, 8.5% had moderate impairment, and 2% had major neurological disability. Of those who were discharged from hospital, 70% were still alive four years later.
Accelerated idioventricular rhythm is a ventricular rhythm with a rate of between 40 and 120 beats per minute. Idioventricular means “relating to or affecting the cardiac ventricle alone” and refers to any ectopic ventricular arrhythmia. Accelerated idioventricular arrhythmias are distinguished from ventricular rhythms with rates less than 40 (ventricular escape) and those faster than 120 (ventricular tachycardia). Though some other references limit to between 60 and 100 beats per minute. It is also referred to as AIVR and "slow ventricular tachycardia."
It can be present at birth. However, it is more commonly associated with reperfusion after myocardial injury.
Supraventricular tachycardia (SVT) is an abnormally fast heart rhythm arising from improper electrical activity in the upper part of the heart. There are four main types: atrial fibrillation, paroxysmal supraventricular tachycardia (PSVT), atrial flutter, and Wolff–Parkinson–White syndrome. Symptoms may include palpitations, feeling faint, sweating, shortness of breath, or chest pain.
They start from either the atria or atrioventricular node. They are generally due to one of two mechanisms: re-entry or increased automaticity. The other type of fast heart rhythm is ventricular arrhythmias—rapid rhythms that start within the ventricle. Diagnosis is typically by electrocardiogram (ECG), holter monitor, or event monitor. Blood tests may be done to rule out specific underlying causes such as hyperthyroidism or electrolyte abnormalities.
Specific treatments depend on the type of SVT. They can include medications, medical procedures, or surgery. Vagal maneuvers or a procedure known as catheter ablation may be effective in certain types. For atrial fibrillation calcium channel blockers or beta blockers may be used. Long term some people benefit from blood thinners such as aspirin or warfarin. Atrial fibrillation affects about 25 per 1000 people, paroxysmal supraventricular tachycardia 2.3 per 1000, Wolff-Parkinson-White syndrome 2 per 1000, and atrial flutter 0.8 per 1000.
Pulseless electrical activity leads to a loss of cardiac output, and the blood supply to the brain is interrupted. As a result, PEA is usually noticed when a person loses consciousness and stops breathing spontaneously. This is confirmed by examining the airway for obstruction, observing the chest for respiratory movement, and feeling the pulse (usually at the carotid artery) for a period of 10 seconds.
These possible causes are remembered as the 6 Hs and the 6 Ts. See Hs and Ts
- Hypovolemia
- Hypoxia
- Hydrogen ions (Acidosis)
- Hyperkalemia or Hypokalemia
- Hypoglycemia
- Hypothermia
- Tablets or Toxins (Drug overdose)
- Cardiac Tamponade
- Tension pneumothorax
- Thrombosis (e.g., myocardial infarction, pulmonary embolism)
- Tachycardia
- Trauma (e.g., hypovolemia from blood loss)
This list is not fully comprehensive. Most notably, it does not include anaphylaxis. Pressure effects associated with artificial ventilation may also contribute to significant reduction in cardiac output, resulting in a clinical diagnosis of PEA.
The possible mechanisms by which the above conditions can cause pulseless in PEA or the same as those recognized as producing circulatory shock states. These are (1) impairment of cardiac filling, (2) impaired pumping effectiveness of the heart, (3) circulatory obstruction and (4) pathological vasodilation causing loss of vascular resistance and excess capacitance. More than one mechanism may be involved in any given case.