Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The prevalence of Klippel–Feil syndrome is unknown due to the fact that there was no study done to determine the true prevalence.
Although the actual occurrence for the KFS syndrome is unknown, it is estimated to occur 1 in 40,000 to 42,000 newborns worldwide. In addition, females seem to be affected slightly more often than males.
The heterogeneity of the Klippel–Feil syndrome has made it difficult to outline the diagnosis as well as the prognosis classes for this disease. Because of this, it has complicated the exact explanation of the genetic cause of the syndrome.
The prognosis for most individuals with KFS is good if the disorder is treated early on and appropriately. Activities that can injure the neck should be avoided, as it may contribute to further damage. Other diseases associated with the syndrome can be fatal if not treated, or if found too late to be treatable.
This disorder is present at birth, however, it may not be understood until several years after birth. Acrodysostosis affects males and females in almost similar numbers. It is difficult to determine the frequency of acrodysostosis in the population as many cases of this disorder cannot be diagnosed properly.
Acrodysostosis also known as Arkless-Graham syndrome or Maroteaux-Malamut syndrome is a rare congenital malformation syndrome which involves shortening of the interphalangeal joints of the hands and feet, intellectual disability in approximately 90% of affected children, and peculiar facies. Other common abnormalities include short head (as measured front to back), small broad upturned nose with flat nasal bridge, protruding jaw, increased bone age, intrauterine growth retardation, juvenile arthritis and short stature. Further abnormalities of the skin, genitals, teeth, and skeleton may occur.
Most reported cases have been sporadic, but it has been suggested that the condition might be genetically related i.e. in an autosomal dominant mode of transmission. Both males and females are affected. The disorder has been associated with the older age of parents at the time of conception.
A PRKAR1A mutation has been identified in acrodysostosis with hormone resistance.
Langer mesomelic dysplasia (LMD) is a rare congenital disorder characterized by an altered bone formation that causes a severe short and disproportionate stature.
It is caused by mutations in the SHOX gene found in the pseudoautosomal region PAR1 of the X and Y chromosomes, at band Xp22.33 or Yp11.32.
SHOX gene deletions have been identified as the major cause of Leri–Weill syndrome.
Leri–Weill dyschondrosteosis is characterized by mesomelic short stature, with bowing of the radius more so than the ulna in the forearms and bowing of the tibia while sparing the fibula.
Current research is focusing on clearly defining the phenotype associated with tetrasomy 18p and identifying which genes cause medical and developmental problems when present in four copies.
The incidence is less than 1/1.000.000. Fewer than 50 cases have been reported so far.
Katz Syndrome is a rare congenital disorder, presenting as a polymalformative syndrome characterized by enlarged viscera, hepatomegaly, diabetes, and skeletal anomalies that result in a short stature, cranial hyperostosis, and typical facial features. It is probably a variant of the autosomal recessive type of Craniometaphyseal Dysplasia.
Stratton parker syndrome is a rare disorder characterized by short stature, wormian bones (extra cranial bones), and dextrocardia (displaced heart). Other symptoms include dermatoglyphics, tooth deformities or missing teeth, abnormal kidney development, shortened limbs, mental retardation, undescended testes or cryptorchidism, and anal atresia. The condition was first described by Stratton and Parker in 1989, and there have been only four reported cases worldwide. Two cases of the syndrome were reported by Gilles-Eric Seralini in 2010 after having been contacted in January 2009.
Alternative names include "Growth Hormone Deficiency with Wormian Bones, Cardiac Anomaly, and Brachycamptodactyly" and "Short stature wormian bones dextrocardia"
Although many perinatal and prenatal risk factors for ONH have been suggested, the predominant, enduring, most frequent risk factors are young maternal age and primiparity (the affected child being the first child born to the mother). Increased frequency of delivery by caesarean section and fetal/neonatal complications, preterm labor, gestational vaginal bleeding, low maternal weight gain, and weight loss during pregnancy are also associated with ONH.
As its name indicates, a person with the syndrome has one Y chromosome and four X chromosomes on the 23rd pair, thus having 49 chromosomes rather than the normal 46. As with most categories of aneuploidy disorders, 49,XXXXY syndrome is often accompanied by intellectual disability. It can be considered a form of 47, XXY Klinefelter syndrome, or a variant of it.
It is genetic but not hereditary. This means that while the genes of the parents cause the syndrome, there is a small chance of more than one child having the syndrome. The probability of inheriting the disease is about 1%.
The individuals with this syndrome are males, but 49, XXXXX also exists with similar characteristics.
The aneuploidy is thought to be caused by problems occurring during meiosis, either in the mother or in both the mother and father. Successive nondisjunctions have been observed in the mother of at least one patient.
The features of the syndrome likely arise due to failure of X-inactivation and the presence of multiple X chromosomes from the same parent causing problems with parental imprinting. In theory, X-inactivation should occur and leave only one X chromosome active in each cell. However, failure of this process has been observed in one individual studied. The reason for this is thought to be the presence of an unusually large, and imbalanced, number of X chromosomes interfering with the process.
Watson syndrome is an autosomal dominant condition characterized by Lisch nodules of the ocular iris, axillary/inguinal freckling, pulmonary valvular stenosis, relative macrocephaly, short stature, and neurofibromas.
Watson syndrome is allelic to NF1, the same gene associated with neurofibromatosis type 1.
Say–Neger syndrome is a rare X-linked genetic disorder that is mostly characterized as developmental delay. It is one of the rare causes of short stature. It is closely related with trigonocephaly (a misshapen forehead due to premature fusion of bones in the skull). People with Say–Meyer syndrome have impaired growth, deficits in motor skills development and mental state.
It is suggested that it is from a X-linked transmission.
Wallis–Zieff–Goldblatt syndrome is a rare condition characterized by inherited skeletal disorders manifested mainly as short stature and lateral clavicular defects. It is also known as Cleidorhizomelic syndrome.
Léri–Weill dyschondrosteosis or LWD is a rare pseudoautosomal dominant genetic disorder which results in dwarfism with short forearms and legs (mesomelic dwarfism) and a bayonet-like deformity of the forearms (Madelung's deformity).
An initial clinical report of this syndrome describes a 6-month-old boy with rhizomelic shortening, particularly in the arms, and protuberances over the lateral aspects of the clavicles. On radiographs the lateral third of the clavicles had a appearance resulting from an abnormal process or protuberance arising from the fusion center. His 22-year-old mother also had a height of 142 cm with an arm span of 136 cm and rhizomelic shortness of the limbs, maximal in the arms, and abnormalities of the acromioclavicular joints. Both the mother and the son had marked bilateral clinodactyly of the fifth fingers associated with hypoplastic middle phalanx.
SHORT syndrome is a medical condition in which affected individuals have multiple birth defects in different organ systems.
It was characterized in 1975.
Life expectancy for individuals with hypochondroplasia is normal; the maximum height is about 147 cm or 4.8 ft.
Tetrasomy 18p is caused by the presence of an additional isochromosome composed of two copies of the p arm of chromosome 18. It has been reported in both the non-mosaic as well as the mosaic state. (The phrase "mosaicism" in this context means that some cells carry the genetic change while others do not.) In the grand majority of cases, the isochromosome is "de novo". Although there has been some speculation that tetrasomy 18p may occur with a higher frequency in children of older mothers, there is not enough evidence to say that this is definitively the case.
Lujan–Fryns syndrome is a rare X-linked dominant syndrome, and is therefore more common in males than females. Its prevalence within the general population has not yet been determined.
In terms of cause this disorder is transmitted as an autosomal dominant trait affecting the "FGFR3" gene on chromosome 4p16.3, there is currently no cure for this condition.
Nicolaides–Baraitser syndrome (NCBRS) is a rare genetic condition caused by de novo missense mutations in the SMARCA2 gene and has only been reported in less than 100 cases worldwide. NCBRS is a distinct condition and well recognizable once the symptoms have been identified.
Acrofrontofacionasal dysostosis is an extremely rare disorder, characterized by intellectual disability, short stature, hypertelorism, broad notched nasal tip, cleft lip/palate, postaxial camptobrachypolysyndactyly, fibular hypoplasia, and anomalies of foot structure.