Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
This disorder is present at birth, however, it may not be understood until several years after birth. Acrodysostosis affects males and females in almost similar numbers. It is difficult to determine the frequency of acrodysostosis in the population as many cases of this disorder cannot be diagnosed properly.
SCS is the most common craniosynostosis syndrome and affects 1 in every 25,000 to 50,000 individuals. It occurs in all racial and ethnic groups, and affects males and females equally. If a parent carries a copy of the SCS gene mutation, then there is a 50% chance their child will also carry a copy of the gene mutation, in which case, the child may or may not show signs of SCS. There is also a 50% chance their child will have two working copies of the gene, and would therefore, not have SCS. If both parents carry a single copy of the SCS gene mutation, then there is a 25% chance their child will have two gene mutation copies (so child would develop severe SCS), a 25% chance their child would have two normal copies of the gene (so would be completely normal), and a 50% chance their child would carry one gene mutation copy and 1 normal copy (so child may or may not display SCS). In rare situations, two normal parents can have a child with SCS due to a "de novo" mutation. The exact cause of the "de novo" mutation is unknown, but it doesn't seem to be related to anything that the parents did or didn't do during the pregnancy. SCS due to a "de novo" mutation is so rare that the proportion of past cases is unknown.
Acrodysostosis also known as Arkless-Graham syndrome or Maroteaux-Malamut syndrome is a rare congenital malformation syndrome which involves shortening of the interphalangeal joints of the hands and feet, intellectual disability in approximately 90% of affected children, and peculiar facies. Other common abnormalities include short head (as measured front to back), small broad upturned nose with flat nasal bridge, protruding jaw, increased bone age, intrauterine growth retardation, juvenile arthritis and short stature. Further abnormalities of the skin, genitals, teeth, and skeleton may occur.
Most reported cases have been sporadic, but it has been suggested that the condition might be genetically related i.e. in an autosomal dominant mode of transmission. Both males and females are affected. The disorder has been associated with the older age of parents at the time of conception.
A PRKAR1A mutation has been identified in acrodysostosis with hormone resistance.
3-M syndrome is most often caused by a mutation in the gene CUL7, but can also be seen with mutations in the genes OBS1 and CCDC8 at lower frequencies. This is an inheritable disorder and can be passed down from parent to offspring in an autosomal recessive pattern. An individual must receive two copies of the mutated gene, one from each parent, in order to be have 3-M syndrome. An individual can be a carrier for the disorder if they inherit only one mutant copy of the gene, but will not present any of the symptoms associated with the disorder.
Since 3-M syndrome is a genetic condition there are no known methods to preventing this disorder. However, genetic testing on expecting parents and prenatal testing, which is a molecular test that screens for any problems in the heath of a fetus during pregnancy, may be available for families with a history of this disorder to determine the fetus' risk in inheriting this genetic disorder.
Life expectancy for individuals with hypochondroplasia is normal; the maximum height is about 147 cm or 4.8 ft.
Recent research has been focused on studying large series of cases of 3-M syndrome to allow scientists to obtain more information behind the genes involved in the development of this disorder. Knowing more about the underlying mechanism can reveal new possibilities for treatment and prevention of genetic disorders like 3-M syndrome.
- One study looks at 33 cases of 3M syndrome, 23 of these cases were identified as CUL7 mutations: 12 being homozygotes and 11 being heterozygotes. This new research shows genetic heterogeneity in 3M syndrome, in contrast to the clinical homogeneity. Additional studies are still ongoing and will lead to the understanding of this new information.
- This study provides more insight on the three genes involved in 3M syndrome and how they interact with each other in normal development. It lead to the discovery that the CUL7, OBS1, and CCDC8 form a complex that functions to maintain microtubule and genomic integrity.
Say–Neger syndrome is a rare X-linked genetic disorder that is mostly characterized as developmental delay. It is one of the rare causes of short stature. It is closely related with trigonocephaly (a misshapen forehead due to premature fusion of bones in the skull). People with Say–Meyer syndrome have impaired growth, deficits in motor skills development and mental state.
It is suggested that it is from a X-linked transmission.
Genitopatellar Syndrome is an autosomal dominant inheritance where the mutation in the KAT6B causes the syndrome. The KAT6B gene is responsible for making an enzyme called histone acetyltransferase which functions in regulating and making of histone which are proteins that attach to DNA and give the chromosomes their shape. The function of histone acetyltransferase produced from KAT6B is unknown but it is considered as a regulator of early developments. There is little known about how the mutation in the KAT6B causes the syndrome but researchers suspects that the mutations occur near the end of the KAT6B gene and causes it to produce shortened acetyltransferase enzyme. The shortened enzyme alters the regulation of other genes. On the other hand, the mutation of KAT6B leading to the specific features of genitopatellar syndrome is still not surely proven.
Some people may have some mental slowness, but children with this condition often have good social skills. Some males may have problems with fertility.
In terms of cause this disorder is transmitted as an autosomal dominant trait affecting the "FGFR3" gene on chromosome 4p16.3, there is currently no cure for this condition.
Renpenning's syndrome is a neurodevelopmental disorder recognised in males that causes intellectual disability, mild growth retardation with examples in the testes and head, and a somewhat short stature. The condition only affects males, starting at birth, and was first characterized in 1962. but first described by Hans Renpenning in 1963 after he documented these traits on many children in one family alone.
It can be associated with "PQBP1".
The incidence is less than 1/1.000.000. Fewer than 50 cases have been reported so far.
Prenatal diagnosis of Saethre-Chotzen Syndrome in high risk pregnancies is doable, but very uncommon and rarely performed. Furthermore, this is only possible if the mutation causing the disease has already been identified within the family genome. There are a few different techniques in which prenatal testing can be carried out. Prenatal testing is usually performed around 15–18 weeks, using amniocentesis to extract DNA from the fetus's cells. Prenatal testing can also be performed during weeks 10-12 using chorionic villus sampling (CVS) to extract DNA from the fetus. Recently, there has been an increased interest in utilizing ultrasound equipment in order to detect fetal skull abnormalities due to immature fusion of the cranial sutures.
CDGP is thought to be inherited from multiple genes from both parents. The strong role of heredity is reflected in the 60-90% likelihood of this growth pattern in a family member of the same or opposite sex. A delay in the reactivation of the hypothalamic-pituitary pulse generator results in a later onset of puberty.
Majewski's polydactyly syndrome, also known as polydactyly with neonatal chondrodystrophy type I, short rib-polydactyly syndrome type II, and short rib-polydactyly syndrome, is a lethal form of neonatal dwarfism characterized by osteochondrodysplasia (skeletal abnormalities in the development of bone and cartilage) with a narrow thorax, polysyndactyly, disproportionately short tibiae, thorax dysplasia, hypoplastic lungs and respiratory insufficiency. Associated anomalies include protruding abdomen, brachydactyly, peculiar faces, hypoplastic epiglottis, cardiovascular defects, renal cysts, and also genital anomalies. Death occurs before or at birth.
The disease is inherited in an autosomal recessive pattern.
It was characterized in 1971.
At the core of the disorder there is a homozygous or compound heterozygous mutation or deletion of the SHOX (Short Stature Homeobox), SHOXY (Short Stature Homeobox Y-linked) or PAR1 (where SHOX enhancer elements are located) genes, which is inherited in a pseudosomal recessive manner.
Although the epidemiologic data indicate that all variants of normal growth are twice as common in boys as in girls, referrals for short stature reflect an even more divergent sex ratio. This likely reflects greater concern about males who are shorter than their peers or who have delayed sexual development.
No racial bias has been identified. Patterns of growth consistent with CDGP occur in infants as young as 3–6 months. However, individuals often do not seek medical attention until puberty, when lack of sexual development becomes a concern and discrepancy in height from peers is magnified by the delay in pubertal growth spurt.
Nicolaides–Baraitser syndrome (NCBRS) is a rare genetic condition caused by de novo missense mutations in the SMARCA2 gene and has only been reported in less than 100 cases worldwide. NCBRS is a distinct condition and well recognizable once the symptoms have been identified.
Lenz–Majewski syndrome is a skin condition characterized by hyperostosis, craniodiaphyseal dysplasia, dwarfism, cutis laxa, proximal symphalangism, syndactyly, brachydactyly, mental retardation, enamel hypoplasia, and hypertelorism.
In 2013, whole-exome sequencing showed that a missense mutation resulting in overactive phosphatidylserine synthase 1 was the cause of LMS, making it the first known human disease to be caused by disrupted phosphatidylserine metabolism. The researchers suggested a link between the condition and bone metabolism.
Genitopatellar syndrome is a rare disorder with characteristic craniofacial features, congenital flexion contractures of the lower limbs, absent or abnormal patellae, urogenital anomalies, and severe psychomotor retardation.
In 2012, it was shown that mutations in the gene KAT6B cause the syndrome.
The growth retardation dates from the intrauterine period (development in the uterus.) The long-term developmental growth and outcome is not known, but the early childhood development is known, which is said to be moderately delayed. Craniosynostosis is usually rare among the X-Linked Intellectual Disability Syndromes, but when it is present, it affects the metopic structure (forehead).
Stratton parker syndrome is a rare disorder characterized by short stature, wormian bones (extra cranial bones), and dextrocardia (displaced heart). Other symptoms include dermatoglyphics, tooth deformities or missing teeth, abnormal kidney development, shortened limbs, mental retardation, undescended testes or cryptorchidism, and anal atresia. The condition was first described by Stratton and Parker in 1989, and there have been only four reported cases worldwide. Two cases of the syndrome were reported by Gilles-Eric Seralini in 2010 after having been contacted in January 2009.
Alternative names include "Growth Hormone Deficiency with Wormian Bones, Cardiac Anomaly, and Brachycamptodactyly" and "Short stature wormian bones dextrocardia"
Malouf syndrome (also known as "congestive cardiomyopathy-hypergonadotropic hypogonadism syndrome") is a congenital disorder that causes one or more of the following symptoms: mental retardation, ovarian dysgenesis, congestive cardiomyopathy, broad nasal base, blepharoptosis, and bone abnormalities, and occasionally marfanoid habitus (tall stature with long and thin limbs, little subcutaneous fat, arachnodactyly, joint hyperextension, narrow face, small chin, large testes, and hypotonia).
This disease is named after J. Malouf, who performed a case study on a family suffering from this disease in 1985.
Trisomy 8 mosaicism affects wide areas of chromosome 8 containing many genes, and can thus be associated with a range of symptoms.
- Mosaic trisomy 8 has been reported in rare cases of Rothmund-Thomson syndrome, a genetic disorder associated with the DNA helicase RECQL4 on chromosome 8q24.3. The syndrome is "characterized by skin atrophy, telangiectasia, hyper- and hypopigmentation, congenital skeletal abnormalities, short stature, premature aging, and increased risk of malignant disease".
- Some individuals trisomic for chromosome 8 were deficient in production of coagulation factor VII due to a factor 7 regulation gene (F7R) mapped to 8p23.3-p23.1.
- Trisomy and other rearrangements of chromosome 8 have also been found in tricho–rhino–phalangeal syndrome.
- Small regions of chromosome 8 trisomy and monosomy are also created by recombinant chromosome 8 syndrome (San Luis Valley syndrome), causing anomalies associated with tetralogy of Fallot, which results from recombination between a typical chromosome 8 and one carrying a parental paracentric inversion.
- Trisomy is also found in some cases of chronic myeloid leukaemia, potentially as a result of karyotypic instability caused by the fusion gene.
Cooks syndrome is a hereditary disorder which is characterized in the hands by bilateral nail hypoplasia on the thumb, index finger, and middle finger, absence of fingernails (anonychia) on the ring finger and little finger, lengthening of the thumbs, and bulbousness of the fingers. In the feet, it is characterized by absence of toenails and absence/hypoplasia of the distal phalanges. In the second study of this disorder, it was found that the intermediate phalanges, proximal phalanges, and metacarpals were unaffected.
The disorder was first described by Cooks "et al." in 1985 after being discovered in two generations of one family. It was proposed that the inheritance of the disorder is autosomal dominant. A second family, this with three affected generations, confirmed that the inheritance of the disorder is autosomal dominant. Although several genetic disorders exist which can cause anonychia and onychodystrophy, such disorders often cause other anomalies such as deafness, mental retardation, and defects of the hair, eyes, and teeth. Cooks syndrome is not known to cause any such anomalies.
In 1999, a pair of siblings was found with brachydactyly type B. Because the disorder primarily affected the nails and distal phalanges, the research group concluded that brachydactyly type B and Cooks syndrome are the same disorder. However, in 2007, a 2-year-old girl was found with symptoms consistent with both brachydactyly type B and Cooks syndrome. It was found that the two syndromes were distinct clinically, radiologically, and genetically.