Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
When treated early, that is, before the onset of pulmonary hypertension, a good outcome is possible in patients with Shone’s syndrome. However, other surgical methods can be employed depending upon the patient’s medical background. The single most important determinant of poor outcome during the surgical management of patients with Shone's syndrome is the degree of involvement of the mitral valve and the presence of secondary pulmonary hypertension.
Known environmental factors include certain infections during pregnancy such as Rubella, drugs (alcohol, hydantoin, lithium and thalidomide) and maternal illness (diabetes mellitus, phenylketonuria, and systemic lupus erythematosus).
Being overweight or obese increases the risk of congenital heart disease. Additionally, as maternal obesity increases, the risk of heart defects also increases. A distinct physiological mechanism has not been identified to explain the link between maternal obesity and CHD, but both prepregnancy folate deficiency and diabetes have been implicated in some studies.
Shone's syndrome (also called Shone's Complex, Shone's Anomaly)is a rare congenital heart disease described by Shone in 1963. In the complete form, four left-sided defects are present:
- Supravalvular mitral membrane (SVMM)
- Parachute mitral valve
- Subaortic stenosis (membranous or muscular)
- Coarctation of the aorta
Of these four defects, supravalvular mitral membrane (SVMM) is the first to occur, and triggers the development of the other three defects. Partial complexes, or form fruste, have also been described. The definition is often expanded to include lesions of the left side of the heart not originally ascribed to Shone's syndrome, including mitral and aortic valvular lesions and supravalvular aortic stenosis.
The term parachute mitral valve stems from the morphological appearance of the valve; that is to say, the mitral valve leaflets appear as the canopy of the parachute, the chordae as the strings and the papillary muscle as the harness.
The cause of congenital heart disease may be genetic, environmental, or a combination of both.
Aortopulmonary septal defect is a rare congenital heart disorder accounting for only 0.1-0.3% of congenital heart defects worldwide. It is characterized by a communication between the aortic and pulmonary arteries, with preservation of two normal semilunar valves. It is the result of an incomplete separation of the aorticopulmonary trunk that normally occurs in early fetal development with formation of the spiral septum. Aortopulmonary septal defects occur in isolation in about half of cases, the remainder are associated with more complex heart abnormalities.
There are numerous types, differentiated by the extent of the defect. These types are:
- Type I: simple defects leading to communication between the ascending aorta and pulmonic trunk
- Type II: defects that extend to the origin of the right pulmonary artery
- Type III: anomalous origin of the right pulmonary artery from the ascending aorta
It is also classified as simple or complex. Simple defects are those that do not require surgical repair, occur with no other defects, or those that require minor stright-forward repair (ductus arteriosus, atrial septal defect). Complex defects are those that occur with other anatomical anomalies or require non-standard repair.
Among the causes of LBBB are:
- Aortic stenosis
- Dilated cardiomyopathy
- Acute myocardial infarction
- Extensive coronary artery disease
- Primary disease of the cardiac electrical conduction system
- Long standing hypertension leading to aortic root dilatation and subsequent aortic regurgitation
- Lyme disease
- Side effect of some cardiac surgeries (e.g., aortic root reconstruction)
Left bundle branch block (LBBB) is a cardiac conduction abnormality seen on the electrocardiogram (ECG). In this condition, activation of the left ventricle of the heart is delayed, which causes the left ventricle to contract later than the right ventricle.
A bundle branch block is a defect of the bundle branches or fascicles in the electrical conduction system of the heart.
Some people with bundle branch blocks are born with this condition. Many other acquire it as a consequence of heart disease. People with bundle branch blocks may still be quite active, and may have nothing more remarkable than an abnormal appearance to their ECG. However, when bundle blocks are complex and diffuse in the bundle systems, or associated with additional and significant ventricular muscle damage, they may be a sign of serious underlying heart disease. In more severe cases, a pacemaker may be required to restore an optimal electrical supply to the heart muscle.
An atrial septal defect is one possible cause of a right bundle branch block. In addition, a right bundle branch block may also result from Brugada syndrome, right ventricular hypertrophy, pulmonary embolism, ischaemic heart disease, rheumatic heart disease, myocarditis, cardiomyopathy or hypertension.
The underlying condition may be treated by medications to control hypertension or diabetes, if they are the primary underlying cause. If coronary arteries are blocked, an invasive coronary angioplasty may relieve the impending RBBB.
Second-degree atrioventricular block (AV block) is a disease of the electrical conduction system of the heart. It is a conduction block between the atria and ventricles. The presence of second-degree AV block is diagnosed when one or more (but not all) of the atrial impulses fail to conduct to the ventricles due to impaired conduction. It is classified as a block of the AV node and is categorized in between first-degree (slowed conduction) and third degree blocks (complete block).
Clinically, it is often asymptomatic by itself and considered benign in nature.
There are two non-distinct types of second-degree AV block, called "Type 1" and "Type 2". In both types, a P wave is blocked from initiating a QRS complex; but, in Type 1, there are increasing delays in each cycle before the omission, whereas, in Type 2, there is no such pattern.
Type 1 second-degree heart block is considered a more benign entity than type 2 second-degree heart block with type 1 not having structural changes found on histology.
Both types are named after Woldemar Mobitz. Type I is also named for Karel Frederik Wenckebach, and type II is also named for John Hay.
Ashman phenomenon, also known as Ashman beats, describes a particular type of wide QRS complex, often seen isolated that is typically seen in atrial fibrillation. It is more often misinterpreted as a premature ventricular complex.
It is named for Richard Ashman (of New Orleans) (1890 –1969), after first being described by Gouaux and Ashman in 1947.
Premature junctional contractions (PJCs), also called atrioventricular junctional premature complexes or junctional extrasystole, are premature cardiac electrical impulses originating from the atrioventricular node of the heart or "junction". This area is not the normal but only a secondary source of cardiac electrical impulse formation. These premature beats can be found occasionally in healthy people and more commonly in some pathologic conditions, typically in the case of drug cardiotoxicity, electrolyte imbalance, mitral valve surgery, and cold water immersion. If more than two such beats are seen, then the condition is termed junctional rhythm. On the surface ECG, premature junctional contractions will appear as a normally shaped ventricular complex or QRS complex, not preceded by any atrial complex or P wave or preceded by an abnormal P wave with a shorter PR interval. Rarely, the abnormal P wave can follow the QRS.
The reported incidence of constriction ring syndrome varies from 1/1200 and 1/15000 live births. The prevalence is equally in male and female.
Fetomaternal factors like prematurity, maternal illnes, low birth weight and maternal drug exposure are predisposing factors for the constriction ring syndrome.
No positive relationship between CRS and genetic inheritance has been reported.
A fusion beat occurs when electrical impulses from different sources act upon the same region of the heart at the same time. If it acts upon the ventricular chambers it is called a ventricular fusion beat, whereas colliding currents in the atrial chambers produce atrial fusion beats.
Ventricular fusion beats can occur when the heart's natural rhythm and the impulse from a pacemaker coincide to activate the same part of a ventricle at the same time, causing visible variation in configuration and height of the QRS complex of an electrocardiogram reading of the heart's activity. This contrasts with the pseudofusion beat wherein the pacemaker impulse does not affect the complex of the natural beat of the heart. Pseudofusion beats are normal. Rare or isolated fusion beats caused by pacemakers are normal as well, but if they occur too frequently may reduce cardiac output and so can require adjustment of the pacemaker.
Most SVTs are unpleasant rather than life-threatening, although very fast heart rates can be problematic for those with underlying ischemic heart disease or the elderly. Episodes require treatment when they occur, but interval therapy may also be used to prevent or reduce recurrence. While some treatment modalities can be applied to all SVTs, there are specific therapies available to treat some sub-types. Effective treatment consequently requires knowledge of how and where the arrhythmia is initiated and its mode of spread.
SVTs can be classified by whether the AV node is involved in maintaining the rhythm. If so, slowing conduction through the AV node will terminate it. If not, AV nodal blocking maneuvers will not work, although transient AV block is still useful as it may unmask an underlying abnormal rhythm.
Once an acute arrhythmia has been terminated, ongoing treatment may be indicated to prevent recurrence. However, those that have an isolated episode, or infrequent and minimally symptomatic episodes, usually do not warrant any treatment other than observation.
In general, patients with more frequent or disabling symptoms warrant some form of prevention. A variety of drugs including simple AV nodal blocking agents such as beta-blockers and verapamil, as well as anti-arrhythmics may be used, usually with good effect, although the risks of these therapies need to be weighed against potential benefits.
Radiofrequency ablation has revolutionized the treatment of tachycardia caused by a re-entrant pathway. This is a low-risk procedure that uses a catheter inside the heart to deliver radio frequency energy to locate and destroy the abnormal electrical pathways. Ablation has been shown to be highly effective: around 90% in the case of AVNRT. Similar high rates of success are achieved with AVRT and typical atrial flutter.
Cryoablation is a newer treatment for SVT involving the AV node directly. SVT involving the AV node is often a contraindication for using radiofrequency ablation due to the small (1%) incidence of injuring the AV node, requiring a permanent pacemaker. Cryoablation uses a catheter supercooled by nitrous oxide gas freezing the tissue to −10 °C. This provides the same result as radiofrequency ablation but does not carry the same risk. If you freeze the tissue and then realize you are in a dangerous spot, you can halt freezing the tissue and allow the tissue to spontaneously rewarm and the tissue is the same as if you never touched it. If after freezing the tissue to −10 °C you get the desired result, then you freeze the tissue down to a temperature of −73 °C and you permanently ablate the tissue.
This therapy has further improved the treatment options for people with AVNRT (and other SVTs with pathways close to the AV node), widening the application of curative ablation to young patients with relatively mild but still troublesome symptoms who would not have accepted the risk of requiring a pacemaker.
Cardiac myxomas can be difficult to manage surgically because of recurrence within the heart, often far away from the site of the initial tumor.
Limb body wall complex (LBWC) is a rare fetal malformation of unknown origins.
Traditionally diagnosis has been based on the Van Allen et al., criteria, i.e. the presence of two out of three of the following anomalies:
1. Exencephaly or encephalocele with facial clefts
2. Thoraco and or abdominoschisis and
3. Limb defects.
LBWC occurs in approximately 0.32 in 100,000 births.
At this time, there is no known cause of Limb Body Wall Complex. However, there have been tentative links made between a diagnosis of LBWC and cocaine use. In addition, current research has shown that there may be a genetic cause for a small limited number of LBWC cases.
Limb Body Wall Complex is a lethal birth defect. There are only anecdotal stories of survivors.
This cardiac arrhythmia can be underlain by several causes, which are best divided into cardiac and noncardiac causes.
Noncardiac causes are usually secondary, and can involve recreational drug use or abuse; metabolic or endocrine issues, especially in the thyroid; an electrolyte imbalance; factors; autonomic reflexes; situational factors such as prolonged bed rest; and autoimmunity.
Cardiac causes include acute or chronic ischemic heart disease, vascular heart disease, valvular heart disease, or degenerative primary electrical disease. Ultimately, the causes act by three mechanisms: depressed automaticity of the heart, conduction block, or escape pacemakers and rhythms.
In general, two types of problems result in bradycardias: disorders of the sinoatrial node (SA node), and disorders of the atrioventricular node (AV node).
With sinus node dysfunction (sometimes called sick sinus syndrome), there may be disordered automaticity or impaired conduction of the impulse from the sinus node into the surrounding atrial tissue (an "exit block"). Second-degree sinoatrial blocks can be detected only by use of a 12-lead EKG. It is difficult and sometimes impossible to assign a mechanism to any particular bradycardia, but the underlying mechanism is not clinically relevant to treatment, which is the same in both cases of sick sinus syndrome: a permanent pacemaker.
Atrioventricular conduction disturbances (AV block; primary AV block, secondary type I AV block, secondary type II AV block, tertiary AV block) may result from impaired conduction in the AV node, or anywhere below it, such as in the bundle of His. The clinical relevance pertaining to AV blocks is greater than that of sinoatrial blocks.
Patients with bradycardia have likely acquired it, as opposed to having it congenitally. Bradycardia is more common in older patients.
Beta-blocker medicines also can slow the heart rate and decrease how forcefully the heart contracts. Beta blockers may slow the heart rate to a dangerous level if prescribed with calcium channel blocker-type medications.
Bradycardia is also part of the mammalian diving reflex.
Surgical correction is recommended when a constriction ring results in a limb contour deformity, with or without lymphedema.