Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The following steps and precautions should be used to avoid infection of the septicemic plague:
- Caregivers of infected patients should wear masks, gloves, goggles and gowns
- Take antibiotics if close contact with infected patient has occurred
- Use insecticides throughout house
- Avoid contact with dead rodents or sick cats
- Set traps if mice or rats are present around the house
- Do not allow family pets to roam in areas where plague is common
- Flea control and treatment for animals (especially rodents)
Human "Yersinia" infections most commonly result from the bite of an infected flea or occasionally an infected mammal, but like most bacterial systemic diseases, the disease may be transmitted through an opening in the skin or by inhaling infectious droplets of moisture from sneezes or coughs. In both cases septicemic plague need not be the result, and in particular, not the initial result, but it occasionally happens that bubonic plague for example leads to infection of the blood, and septicemic plague results. If the bacteria happen to enter the bloodstream rather than the lymph or lungs, they multiply in the blood, causing bacteremia and severe sepsis. In septicemic plague, bacterial endotoxins cause disseminated intravascular coagulation (DIC), where tiny blood clots form throughout the body, commonly resulting in localised ischemic necrosis, tissue death from lack of circulation and perfusion.
DIC results in depletion of the body's clotting resources, so that it can no longer control bleeding. Consequently, the unclotted blood bleeds into the skin and other organs, leading to red or black patchy rash and to hematemesis (vomiting blood) or hemoptysis (spitting blood). The rash may cause bumps on the skin that look somewhat like insect bites, usually red, sometimes white in the center.
Untreated septicemic plague is almost always fatal. Early treatment with antibiotics reduces the mortality rate to between 4 and 15 percent. Death is almost inevitable if treatment is delayed more than about 24 hours, and some people may even die on the same day they with the disease.
Septicemic plague is caused by horizontal and direct transmission. Horizontal transmission is the transmitting of a disease from one individual to another regardless of blood relation. Direct transmission occurs from close physical contact with individuals, through common air usage, from direct bite from a flea or an infected rodent. Most common rodents may carry the bacteria and so may Leporidae such as rabbits:
Significant carriers of the bacteria in the United States include:
- Rats
- Prairie dogs
- Squirrels
- Chipmunks
- Rabbits
The bacteria are cosmopolitan, mainly in rodents in all continents except Australia and Antarctica. The greatest frequency of human plague infections occur in Africa. The bacteria most commonly appear in rural areas and wherever there is poor sanitation, overcrowding, and high rodent populations in urban areas. Outdoor activities such as hiking, camping, or hunting where plague-infected animals may be found, increase the risk of contracting septicemic plague, and so do certain occupations such as veterinary or other animal-related work.
Since human plague is rare in most parts of the world, routine vaccination is not needed other than for those at particularly high risk of exposure, nor for people living in areas with enzootic plague, meaning it occurs at regular, predictable rates in populations and specific areas, such as the western United States. It is not even indicated for most travellers to countries with known recent reported cases, particularly if their travel is limited to urban areas with modern hotels. The CDC thus only recommends vaccination for: (1) all laboratory and field personnel who are working with "Y. pestis" organisms resistant to antimicrobials; (2) people engaged in aerosol experiments with "Y. pestis"; and (3) people engaged in field operations in areas with enzootic plague where preventing exposure is not possible (such as some disaster areas).
A systematic review by the Cochrane Collaboration found no studies of sufficient quality to make any statement on the efficacy of the vaccine.
Transmission of "Y. pestis" to an uninfected individual is possible by any of the following means.
- droplet contact – coughing or sneezing on another person
- direct physical contact – touching an infected person, including sexual contact
- indirect contact – usually by touching soil contamination or a contaminated surface
- airborne transmission – if the microorganism can remain in the air for long periods
- fecal-oral transmission – usually from contaminated food or water sources
- vector borne transmission – carried by insects or other animals.
"Yersinia pestis" circulates in animal reservoirs, particularly in rodents, in the natural foci of infection found on all continents except Australia. The natural foci of plague are situated in a broad belt in the tropical and sub-tropical latitudes and the warmer parts of the temperate latitudes around the globe, between the parallels 55 degrees North and 40 degrees South.
Contrary to popular belief, rats did not directly start the spread of the bubonic plague. It is mainly a disease in the fleas ("Xenopsylla cheopis") that infested the rats, making the rats themselves the first victims of the plague. Infection in a human occurs when a person is bitten by a flea that has been infected by biting a rodent that itself has been infected by the bite of a flea carrying the disease. The bacteria multiply inside the flea, sticking together to form a plug that blocks its stomach and causes it to starve. The flea then bites a host and continues to feed, even though it cannot quell its hunger, and consequently the flea vomits blood tainted with the bacteria back into the bite wound. The bubonic plague bacterium then infects a new person and the flea eventually dies from starvation. Serious outbreaks of plague are usually started by other disease outbreaks in rodents, or a rise in the rodent population.
Since the invention of antibiotics, the rate of death associated with tularemia has decreased from 60% to less than 4%.
There are no safe, available, approved vaccines against tularemia. However, vaccination research and development continues, with live attenuated vaccines being the most thoroughly researched and most likely candidate for approval. Sub-unit vaccine candidates, such as killed-whole cell vaccines, are also under investigation, however research has not reached a state of public use.
Optimal preventative practices include limiting direct exposure when handling potentially infected animals, such as wearing gloves and face masks while handling potentially infected animals (importantly when skinning deceased animals).
Bubonic plague is an infection of the lymphatic system, usually resulting from the bite of an infected flea, "Xenopsylla cheopis" (the rat flea). In very rare circumstances, as in the septicemic plague, the disease can be transmitted by direct contact with infected tissue or exposure to the cough of another human. The flea is parasitic on house and field rats, and seeks out other prey when its rodent hosts die. The bacteria remain harmless to the flea, allowing the new host to spread the bacteria. The bacteria form aggregates in the gut of infected fleas and this results in the flea regurgitating ingested blood, which is now infected, into the bite site of a rodent or human host. Once established, bacteria rapidly spread to the lymph nodes and multiply.
"Y. pestis" bacilli can resist phagocytosis and even reproduce inside phagocytes and kill them. As the disease progresses, the lymph nodes can haemorrhage and become swollen and necrotic. Bubonic plague can progress to lethal septicemic plague in some cases. The plague is also known to spread to the lungs and become the disease known as the pneumonic plague.
Pneumonic plague can be caused in two ways: primary, which results from the inhalation of aerosolised plague bacteria, or secondary, when septicaemic plague spreads into lung tissue from the bloodstream. Pneumonic plague is "not" exclusively vector-borne like bubonic plague; instead it can be spread from person to person. There have been cases of pneumonic plague resulting from the dissection or handling of contaminated animal tissue. This is one type of the plague formerly known as the Black Death.
After exposure to "B. pseudomallei" (particularly following a laboratory accident) combined treatment with co-trimoxazole and doxycycline is recommended. Trovafloxacin and grepafloxacin have been shown to be effective in animal models.
Person-to-person transmission is exceedingly unusual; and patients with melioidosis should not be considered contagious. Lab workers should handle "B. pseudomallei" under BSL-3 isolation conditions, as laboratory-acquired melioidosis has been described.
In endemic areas, people (rice-paddy farmers in particular) are warned to avoid contact with soil, mud, and surface water where possible. Case clusters have been described following flooding and cyclones and probably relate to exposure. Other case clusters have related to contamination of drinking water supplies. Populations at risk include patients with diabetes mellitus, chronic renal failure, chronic lung disease, or an immune deficiency of any kind. The effectiveness of measures to reduce exposure to the causative organism have not been established. A vaccine is not yet available.
Anthrax can enter the human body through the intestines (ingestion), lungs (inhalation), or skin (cutaneous) and causes distinct clinical symptoms based on its site of entry. In general, an infected human will be quarantined. However, anthrax does not usually spread from an infected human to a noninfected human. But, if the disease is fatal to the person's body, its mass of anthrax bacilli becomes a potential source of infection to others and special precautions should be used to prevent further contamination. Inhalational anthrax, if left untreated until obvious symptoms occur, is usually fatal.
Anthrax can be contracted in laboratory accidents or by handling infected animals or their wool or hides. It has also been used in biological warfare agents and by terrorists to intentionally infect as exemplified by the 2001 anthrax attacks.
The spores are able to survive in harsh conditions for decades or even centuries. Such spores can be found on all continents, including Antarctica. Disturbed grave sites of infected animals have been known to cause infection after 70 years.
Occupational exposure to infected animals or their products (such as skin, wool, and meat) is the usual pathway of exposure for humans. Workers who are exposed to dead animals and animal products are at the highest risk, especially in countries where anthrax is more common. Anthrax in livestock grazing on open range where they mix with wild animals still occasionally occurs in the United States and elsewhere. Many workers who deal with wool and animal hides are routinely exposed to low levels of anthrax spores, but most exposure levels are not sufficient to develop anthrax infections. A lethal infection is reported to result from inhalation of about 10,000–20,000 spores, though this dose varies among host species. Little documented evidence is available to verify the exact or average number of spores needed for infection.
Historically, inhalational anthrax was called woolsorters' disease because it was an occupational hazard for people who sorted wool. Today, this form of infection is extremely rare in advanced nations, as almost no infected animals remain.
Since 2002, the World Health Organization (WHO) has reported seven plague outbreaks, though some may go unreported because they often happen in remote areas. Between 1998 and 2009, nearly 24,000 cases have been reported, including about 2,000 deaths, in Africa, Asia, the Americas, and Eastern Europe. Ninety-eight percent of the world's cases occur in Africa.
Sylvatic plague is most commonly found in prairie dog colonies; the flea that feeds on prairie dogs (and other mammals) serves as the vector for transmission to the new host.
Sylvatic plague is primarily transmitted among wildlife through flea bites and contact with contaminated fluids or tissue, through predation or scavenging. Humans can contract plague from wildlife through flea bites and handling animal carcasses.
Bubonic plague is one of three types of plague caused by bacterium "Yersinia pestis". One to seven days after exposure to the bacteria, flu like symptoms develop. These include fever, headaches, and vomiting. Swollen and painful lymph nodes occur in the area closest to where the bacteria entered the skin. Occasionally the swollen lymph nodes may break open.
The three types of plague are the result of the route of infection: bubonic plague, septicemic plague, and pneumonic plague. Bubonic plague is mainly spread by infected fleas from small animals. It may also result from exposure to the body fluids from a dead plague infected animal. In the bubonic form of plague, the bacteria enter through the skin through a flea bite and travel via the lymphatic vessels to a lymph node, causing it to swell. Diagnosis is made by finding the bacteria in the blood, sputum, or fluid from lymph nodes.
Prevention is through public health measures such as not handling dead animals in areas where plague is common. Vaccines have not been found to be very useful for plague prevention. Several antibiotics are effective for treatment including streptomycin, gentamicin, and doxycycline. Without treatment it results in the death of 30% to 90% of those infected. Death, if it occurs, is typically within ten days. With treatment the risk of death is around 10%. Globally there are about 650 documented cases a year which result in ~120 deaths. The disease is most common in Africa.
The plague is believed to be the cause of the Black Death that swept through Asia, Europe, and Africa in the 14th century and killed an estimated 50 million people. This was about 25% to 60% of the European population. Because the plague killed so many of the working population, wages rose due to the demand for labor. Some historians see this as a turning point in European economic development. The term "bubonic" is derived from the Greek word , meaning "groin". The term "buboes" is also used to refer to the swollen lymph nodes.
Common vectors for urban plague are house mice, black rats, and Norway rats.
Occupations at risk include veterinarians, slaughterhouse workers, farmers, sailors on rivers, sewer maintenance workers, waste disposal facility workers, and people who work on derelict buildings. Slaughterhouse workers can contract the disease through contact with infected blood or body fluids. Rowers, kayakers and canoeists also sometimes contract the disease. It was once mostly work-related but is now often also related to adventure tourism and recreational activities.
Urban plague is an infectious disease among rodent species that live in close association with humans in urban areas. It is caused by the bacterium Yersinia pestis which is the same bacterium that causes bubonic and pneumonic plague in humans. Plague was first introduced into the United States in 1900 by rat–infested steamships that had sailed from affected areas, mostly from Asia. Urban plague spread from urban rats to rural rodent species, especially among prairie dogs in the western United States.
It is estimated that seven to ten million people are infected by leptospirosis annually. One million cases of severe leptospirosis occur annually, with 58,900 deaths. Annual rates of infection vary from 0.02 per 100,000 in temperate climates to 10 to 100 per 100,000 in tropical climates. This leads to a lower number of registered cases than likely exists.
The number of new cases of leptospirosis is difficult to estimate since many cases of the disease go unreported. There are many reasons for this, but the biggest issue is separating the disease from other similar conditions. Laboratory testing is lacking in many areas.
In context of global epidemiology, the socioeconomic status of many of the world’s population is closely tied to malnutrition; subsequent lack of micronutrients may lead to increased risk of infection and death due to leptospirosis infection. Micronutrients such as iron, calcium, and magnesium represent important areas of future research.
Outbreaks that occurred after the 1940's have happened mostly in the late summer seasons, which happens to be the driest part of the year. The people at the highest risk for leptospirosis are young people whose age ranges from 5-16 years old, and can also range to young adults.
The amount of cases increase during the rainy season in the tropics and during the late summer or early fall in Western countries. This happens because leptospires survive best in fresh water, damp alkaline soil, vegetation, and mud with temperatures higher that 22° C. This also leads to increased risk of exposure to populations during flood conditions, and leptospire concentrations to peak in isolated pools during drought. There is no evidence of leptospirosis having any effect on sexual and age-related differences. However, a major risk factor for development of the disease is occupational exposure, a disproportionate number of working-aged males are affected. There have been reported outbreaks where more than 40% of people are younger than 15. “Active surveillance measures have detected leptospire antibodies in as many as 30% of children in some urban American populations.” Potential reasons for such cases include children playing with suspected vectors such as dogs or indiscriminate contact with water.
Diagnosis is made with isolation of "Pasteurella multocida" in a normally sterile site (blood, pus, or cerebrospinal fluid).
As the infection is usually transmitted into humans through animal bites, antibiotics usually treat the infection, but medical attention should be sought if the wound is severely swelling. Pasteurellosis is usually treated with high-dose penicillin if severe. Either tetracycline or chloramphenicol provides an alternative in beta-lactam-intolerant patients. However, it is most important to treat the wound.
The U.S. Centers for Disease Control and Prevention (CDC) publishes a journal "Emerging Infectious Diseases" that identifies the following factors contributing to disease emergence:
- Microbial adaption; e.g. genetic drift and genetic shift in Influenza A
- Changing human susceptibility; e.g. mass immunocompromisation with HIV/AIDS
- Climate and weather; e.g. diseases with zoonotic vectors such as West Nile Disease (transmitted by mosquitoes) are moving further from the tropics as the climate warms
- Change in human demographics and trade; e.g. rapid travel enabled SARS to rapidly propagate around the globe
- Economic development; e.g. use of antibiotics to increase meat yield of farmed cows leads to antibiotic resistance
- Breakdown of public health; e.g. the current situation in Zimbabwe
- Poverty and social inequality; e.g. tuberculosis is primarily a problem in low-income areas
- War and famine
- Bioterrorism; e.g. 2001 Anthrax attacks
- Dam and irrigation system construction; e.g. malaria and other mosquito borne diseases
Yersiniosis is an infectious disease caused by a bacterium of the genus "Yersinia". In the United States, most yersiniosis infections among humans are caused by "Yersinia enterocolitica". The infection by "Y. enterocolitica" is also known as pseudotuberculosis. Yersiniosis is mentioned as a specific zoonotic disease to prevent outbreaks in European Council Directive 92/117/EEC.
Infection with " Y . enterocolitica" occurs most often in young children. The infection is thought to be contracted through the consumption of undercooked meat products, unpasteurized milk, or water contaminated by the bacteria. It has been also sometimes associated with handling raw chitterlings.
Another bacterium of the same genus, "Yersinia pestis", is the cause of Plague.
Crayfish plague, "Aphanomyces astaci", is a water mold that infects crayfish, most notably the European "Astacus" which dies within a few weeks of being infected. When experimentally tested, species from Australia, New Guinea and Japan were also found to be susceptible to the infection.