Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Gram negative bacterial species are responsible for approximately 24% of all cases of healthcare-associated bacteremia and 45% of all cases of community-acquired bacteremia. In general, gram negative bacteria enter the bloodstream from infections in the respiratory tract, genitourinary tract, gastrointestinal tract, or hepatobiliary system. Gram-negative bacteremia occurs more frequently in elderly populations (65 years or older) and is associated with higher morbidity and mortality in this population.
"E.coli" is the most common cause of community-acquired bacteremia accounting for approximately 75% of cases. E.coli bacteremia is usually the result of a urinary tract infection. Other organisms that can cause community-acquired bacteremia include "pseudomonas aeruginosa", "klebsiella pneumoniae", and "proteus mirabilis". "Salmonella" infection, despite mainly only resulting in gastroenteritis in the developed world, is a common cause of bacteremia in Africa. It principally affects children who lack antibodies to Salmonella and HIV+ patients of all ages.
Among healthcare-associated cases of bacteremia, gram negative organisms are an important cause of bacteremia in the ICU. Catheters in the veins, arteries, or urinary tract can all create a way for gram negative bacteria to enter the bloodstream. Surgical procedures of the genitourinary tract, intestinal tract, or hepatobiliary tract can also lead to gram negative bacteremia. "Pseudomonas" and "enterobacter" species are the most important causes of gram negative bacteremia in the ICU.
There are several risk factors that increase the likelihood of developing bacteremia from any type of bacteria. These include:
- HIV infection
- Diabetes Mellitus
- Chronic hemodialysis
- Solid organ transplant
- Stem cell transplant
- Treatment with glucocorticoids
- Liver failure
HCAP is a condition in patients who can come from the community, but have frequent contact with the healthcare environment. Historically, the etiology and prognosis of nursing home pneumonia appeared to differ from other types of community acquired pneumonia, with studies reporting a worse prognosis and higher incidence of multi drug resistant organisms as etiology agents. The definition criteria which has been used is the same as the one which has been previously used to identify bloodstream healthcare associated infections.
HCAP is no longer recognized as a clinically independent entity. This is due to increasing evidence from a growing number of studies that many patients defined as having HCAP are not at high risk for MDR pathogens. As a result, 2016 IDSA guidelines removed consideration of HCAP as a separate clinical entity.
Healthcare-associated pneumonia can be defined as pneumonia in a patient with at least one of the following risk factors:
- hospitalization in an acute care hospital for two or more days in the last 90 days;
- residence in a nursing home or long-term care facility in the last 30 days
- receiving outpatient intravenous therapy (like antibiotics or chemotherapy) within the past 30 days
- receiving home wound care within the past 30 days
- attending a hospital clinic or dialysis center in the last 30 days
- having a family member with known multi-drug resistant pathogens
The Centers for Disease Control and Prevention (CDC) estimated roughly 1.7 million hospital-associated infections, from all types of bacteria combined, cause or contribute to 99,000 deaths each year. Other estimates indicate 10%, or 2 million, patients a year become infected, with the annual cost ranging from $4.5 billion to $11 billion. In the USA, the most frequent type of infection hospitalwide is urinary tract infection (36%), followed by surgical site infection (20%), and bloodstream infection and pneumonia (both 11%).
In 2012 the Health Protection Agency reported the prevalence rate of HAIs in England was 6.4% in 2011, against a rate of 8.2% in 2006. With respiratory tract, urinary tract and surgical site infections the most common types of HAI reported.
Strains of hVISA and VISA do not have resistant genes found in "Enterococcus" and the proposed mechanisms of resistance include the sequential mutations resulting in a thicker cell wall and the synthesis of excess amounts of D-ala-D-ala residues. VRSA strain acquired the vancomycin resistance gene cluster "vanA" from VRE.
The incidence of pleural empyema and the prevalence of specific causative microorganisms varies depending on the source of infection (community acquired vs. hospital acquired pneumonia), the age of the patient and host immune status. Risk factors include alcoholism, drug use, HIV infection, neoplasm and pre-existent pulmonary disease. Pleural empyema was found in 0.7% of 3675 patients needing hospitalization for a community acquired pneumonia in a recent Canadian single-center prospective study. A multi-center study from the UK including 430 adult patients with community acquired pleural empyema found negative pleural-fluid cultures in 54% of patients, Streptococcus milleri group in 16%, Staphylococcus aureus in 12%, Streptococcus pneumoniae in 8%, other Streptococci in 7% and anaerobic bacteria in 8%. Given the difficulties in culturing anaerobic bacteria the frequency of the latter (including mixed infections) might be underestimated.
The risk of empyema in children seems to be comparable to adults. Using the United States Kids’ Inpatient Database the incidence is calculated to be around 1.5% in children hospitalized for community acquired pneumonia, although percentages up to 30% have been reported in individual hospitals, a difference which may be explained by an transient endemic of highly invasive serotype or overdiagnosis of small parapneumonic effusions. The distribution of causative organisms does differ greatly from that in adults: in an analysis of 78 children with community acquired pleural empyema, no micro-organism was found in 27% of patients, Streptococcus pneumoniae in 51%, Streptococcus pyogenes in 9% and Staphylococcus aureus in 8%.
Although pneumococcal vaccination dramatically decreased the incidence of pneumonia in children, it did not have this effect on the incidence of complicated pneumonia. It has been shown that the incidence of empyema in children was already on the rise at the end of the 20th century, and that the widespread use of pneumococcal vaccination did not slow down this trend. This might in part be explained by a change in prevalence of (more invasive) pneumococcal serotypes, some of which are not covered by the vaccine, as well a rise in incidence of pneumonia caused by other streptococci and staphylococci. The incidence of empyema seems to be rising in the adult population as well, albeit at a slower rate.
"Candida albicans", a yeast, is associated with endocarditis in IV drug users and immunocompromised patients. Other fungi demonstrated to cause endocarditis are "Histoplasma capsulatum" and Aspergillus. Endocarditis with "Tricosporon asahii" has also been reported in a case report.
The current incidence in the United States is somewhere around 0.5% per year; overall, the incidence rate for developed world falls between 0.2–0.7%. In developing countries, the incidence of omphalitis varies from 2 to 7 for 100 live births. There does not appear to be any racial or ethnic predilection.
Like many bacterial infections, omphalitis is more common in those patients who have a weakened or deficient immune system or who are hospitalized and subject to invasive procedures. Therefore, infants who are premature, sick with other infections such as blood infection (sepsis) or pneumonia, or who have immune deficiencies are at greater risk. Infants with normal immune systems are at risk if they have had a prolonged birth, birth complicated by infection of the placenta (chorioamnionitis), or have had umbilical catheters.
Vancomycin-resistant "Staphylococcus aureus" are strains of "Staphylococcus aureus" that have become resistant to the glycopeptide antibiotic vancomycin.
Opportunistic infections caused by Feline Leukemia Virus and Feline immunodeficiency virus retroviral infections can be treated with Lymphocyte T-Cell Immune Modulator.
"Staphylococcus aureus" followed by "Streptococci" of the viridans group and coagulase negative Staphylococci are the three most common organisms responsible for infective endocarditis. Other "Streptococci" and "Enterococci" are also a frequent cause of infective endocarditis. HACEK group of microorganisms and fungi are seen less frequently in North America.
Viridans Alpha-hemolytic "streptococci", that are present in the mouth are the most frequently isolated microorganisms when the infection is acquired in a community setting. In contrast, "Staphylococcus" blood stream infections are frequently acquired in a health care setting where they can enter the blood stream through procedures that cause break in the integrity of skin like surgery, catheterisation or during access of long term indwelling catheters or secondary to intravenous injection of recreational drugs.
"Enterococcus" can enter the bloodstream as a consequence of abnormalities in the gastrointestinal or genitourinary tracts.
Some organisms, when isolated, give valuable clues to the cause, as they tend to be specific.
- "Pseudomonas" species, which are very resilient organisms that thrive in water, may contaminate street drugs that have been contaminated with drinking water. "P. aeruginosa" can infect a child through foot punctures, and can cause both endocarditis and septic arthritis.
- "S. bovis" and "Clostridium septicum", which are part of the natural flora of the bowel, are associated with colonic malignancies. When they present as the causative agent in endocarditis, it usually calls for a colonoscopy to be done immediately due to concerns regarding hematogenous spread of bacteria from the colon due to the neoplasm breaking down the barrier between the gut lumen and the blood vessels which drain the bowel.
- HACEK organisms are a group of bacteria that live on the dental gums, and can be seen with IV drug users who contaminate their needles with saliva. Patients may also have a history of poor dental hygiene, or pre-existing valvular disease.
- Less commonly reported bacteria responsible for so called "culture negative endocarditis" include "Bartonella", "Chlamydia psittaci", and "Coxiella". Such bacteria can be identified by serology, culture of the excised valve tissue, sputum, pleural fluid, and emboli; and by polymerase chain reaction or and sequencing of bacterial 16S ribosomal RNA.
Multiple case reports of infective endocarditis caused by unusual organisms have been published. Few examples include: "Propionibacterium" sp., which are normal skin flora, have been responsible for infective endocarditis sometimes leading to deaths due to the indolent course of this abscess producing infection."Tropheryma whipplei" has caused endocarditis without gastrointestinal involvement. "Citrobacter koseri" was found in an immunocompetent adult. "Neisseria bacilliformis" was found in a patient with a bicuspid aortic valve.
Prevention of bacterial pneumonia is by vaccination against "Streptococcus pneumoniae" (pneumococcal polysaccharide vaccine for adults and pneumococcal conjugate vaccine for children), "Haemophilus influenzae" type B, meningococcus, "Bordetella pertussis", "Bacillus anthracis", and "Yersinia pestis".
Common multidrug-resistant organisms are usually bacteria:
- Vancomycin-Resistant Enterococci (VRE)
- Methicillin-Resistant "Staphylococcus" "aureus" (MRSA)
- Extended-spectrum β-lactamase (ESBLs) producing Gram-negative bacteria
- "Klebsiella" "pneumoniae" carbapenemase (KPC) producing Gram-negatives
- Multidrug-Resistant gram negative rods (MDR GNR) MDRGN bacteria such as "Enterobacter species", "E.coli", "Klebsiella pneumoniae", "Acinetobacter baumannii", "Pseudomonas aeruginosa"
A group of gram-positive and gram-negative bacteria of particular recent importance have been dubbed as the ESKAPE group ("Enterococcus faecium", "Staphylococcus aureus", "Klebsiella pneumoniae", "Acinetobacter baumannii", "Pseudomonas aeruginosa" and Enterobacter species).
- Multi-drug-resistant tuberculosis
Since opportunistic infections can cause severe disease, much emphasis is placed on measures to prevent infection. Such a strategy usually includes restoration of the immune system as soon as possible, avoiding exposures to infectious agents, and using antimicrobial medications ("prophylactic medications") directed against specific infections.
People who have difficulty breathing due to pneumonia may require extra oxygen. An extremely sick individual may require artificial ventilation and intensive care as life-saving measures while his or her immune system fights off the infectious cause with the help of antibiotics and other drugs.
The prime example for MDR against antiparasitic drugs is malaria. "Plasmodium vivax" has become chloroquine and sulfadoxine-pyrimethamine resistant a few decades ago, and as of 2012 artemisinin-resistant Plasmodium falciparum has emerged in western Cambodia and western Thailand.
"Toxoplasma gondii" can also become resistant to artemisinin, as well as atovaquone and sulfadiazine, but is not usually MDR
Antihelminthic resistance is mainly reported in the veterinary literature, for example in connection with the practice of livestock drenching and has been recent focus of FDA regulation.
People with recurrent boils are as well more likely to have a positive family history, take antibiotics, and to have been hospitalised, anemic, or diabetic; they are also more likely to have associated skin diseases and multiple lesions.
The main coagulase-positive staphylococcus is Staphylococcus aureus, although not all strains of Staphylococcus aureus are coagulase positive. These bacteria can survive on dry surfaces, increasing the chance of transmission. S. aureus is also implicated in toxic shock syndrome; during the 1980s some tampons allowed the rapid growth of S. aureus, which released toxins that were absorbed into the bloodstream. Any S. aureus infection can cause the staphylococcal scalded skin syndrome, a cutaneous reaction to exotoxin absorbed into the bloodstream. It can also cause a type of septicaemia called pyaemia. The infection can be life-threatening. Problematically, Methicillin-resistant Staphylococcus aureus (MRSA) has become a major cause of hospital-acquired infections, and is being, MRSA has also been recognized with increasing frequency in community-acquired infections. The symptoms of a Staph Infection include a collection of pus, such as a boil or furuncle, or abscess. The area is typically tender or painful and may be reddened or swollen.
Other causes include poor immune system function such as from HIV/AIDS, diabetes, malnutrition, or alcoholism. Poor hygiene and obesity have also been linked. It may occur following antibiotic use due to the development of resistance to the antibiotics used. An associated skin disease favors recurrence. This may be attributed to the persistent colonization of abnormal skin with "S. aureus" strains, such as is the case in persons with atopic dermatitis.
Boils which recur under the arm, breast or in the groin area may be associated with hidradenitis suppurativa (HS).
"Other infections include:"
- "Closed-space infections of the fingertips, known as paronychia."
All patients with empyema require outpatient follow-up with a repeat chest X-ray and inflammatory biochemistry analysis within 4 weeks following discharge. Chest radiograph returns to normal in the majority of patients by 6 months. Patients should of course be advised to return sooner if symptoms redevelop. Long-term sequelae of pleural empyema are rare but include bronchopleural fistula formation, recurrent empyema and pleural thickening, which may lead to functional lung impairment needing surgical decortication.
Approximately 15% of adult patients with pleural infection die within 1 year of the event, although deaths are usually due to comorbid conditions and not directly due to sepsis from the empyema. Mortality in children is generally reported to be less than 3%. No reliable clinical, radiological or pleural fluid characteristics accurately determine patients’ prognosis at initial presentation.
Skin abscesses are common and have become more common in recent years. Risk factors include intravenous drug use with rates reported as high as 65% in this population. In 2005 in the United States 3.2 million people went to the emergency department for an abscess. In Australia around 13,000 people were hospitalized in 2008 for the disease.
Fungi and parasites may also cause the disease. Fungi and parasites are especially associated with immunocompromised patients. Other causes include: "Nocardia asteroides", "Mycobacterium", Fungi (e.g. "Aspergillus", "Candida", "Cryptococcus", "Mucorales", "Coccidioides", "Histoplasma capsulatum", "Blastomyces dermatitidis", "Bipolaris", "Exophiala dermatitidis", "Curvularia pallescens", "Ochroconis gallopava", "Ramichloridium mackenziei", "Pseudallescheria boydii"), Protozoa (e.g. "Toxoplasma gondii", "Entamoeba histolytica", "Trypanosoma cruzi", "Schistosoma", "Paragonimus"), and Helminths (e.g. "Taenia solium"). Organisms that are most frequently associated with brain abscess in patients with AIDS are poliovirus, "Toxoplasma gondii", and "Cryptococcus neoformans", though in infection with the latter organism, symptoms of meningitis generally predominate.
These organisms are associated with certain predisposing conditions:
- Sinus and dental infections—Aerobic and anaerobic streptococci, anaerobic gram-negative bacilli (e.g. "Prevotella", "Porphyromonas", "Bacteroides"), "Fusobacterium", "S. aureus", and Enterobacteriaceae
- Penetrating trauma—"S. aureus", aerobic streptococci, Enterobacteriaceae, and "Clostridium" spp.
- Pulmonary infections—Aerobic and anaerobic streptococci, anaerobic gram-negative bacilli (e.g. "Prevotella", "Porphyromonas", "Bacteroides"), "Fusobacterium", "Actinomyces", and "Nocardia"
- Congenital heart disease—Aerobic and microaerophilic streptococci, and "S. aureus"
- HIV infection—"T. gondii", "Mycobacterium", "Nocardia", "Cryptococcus", and "Listeria monocytogenes"
- Transplantation—"Aspergillus", "Candida", "Cryptococcus", "Mucorales", "Nocardia", and "T. gondii"
- Neutropenia—Aerobic gram-negative bacilli, "Aspergillus", "Candida", and "Mucorales"