Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The symptoms of strep throat usually improve within three to five days, irrespective of treatment. Treatment with antibiotics reduces the risk of complications and transmission; children may return to school 24 hours after antibiotics are administered. The risk of complications in adults is low. In children, acute rheumatic fever is rare in most of the developed world. It is, however, the leading cause of acquired heart disease in India, sub-Saharan Africa and some parts of Australia.
Complications arising from streptococcal throat infections include:
- Acute rheumatic fever
- Scarlet fever
- Streptococcal toxic shock syndrome
- Glomerulonephritis
- PANDAS syndrome
- Peritonsillar abscess
- Cervical lymphadenitis
- Mastoiditis
The economic cost of the disease in the United States in children is approximately $350 million annually.
Strep throat is caused by group A beta-hemolytic streptococcus (GAS or S. pyogenes). Other bacteria such as non–group A beta-hemolytic streptococci and fusobacterium may also cause pharyngitis. It is spread by direct, close contact with an infected person; thus crowding, as may be found in the military and schools, increases the rate of transmission. Dried bacteria in dust are not infectious, although moist bacteria on toothbrushes or similar items can persist for up to fifteen days. Contaminated food can result in outbreaks, but this is rare. Of children with no signs or symptoms, 12% carry GAS in their pharynx, and, after treatment, approximately 15% of those remain positive, and are true "carriers".
Some cases of pharyngitis are caused by fungal infection such as Candida albicans causing oral thrush.
A number of different bacteria can infect the human throat. The most common is Group A streptococcus, but others include "Streptococcus pneumoniae", "Haemophilus influenzae", "Bordetella pertussis", "Bacillus anthracis", "Corynebacterium diphtheriae", "Neisseria gonorrhoeae", "Chlamydophila pneumoniae", and "Mycoplasma pneumoniae".
- Streptococcal pharyngitis
Streptococcal pharyngitis or strep throat is caused by group A beta-hemolytic streptococcus (GAS). It is the most common bacterial cause of cases of pharyngitis (15–30%). Common symptoms include fever, sore throat, and large lymph nodes. It is a contagious infection, spread by close contact with an infected individual. A definitive diagnosis is made based on the results of a throat culture. Antibiotics are useful to both prevent complications and speed recovery.
- Fusobacterium necrophorum
"Fusobacterium necrophorum" is a normal inhabitant of the oropharyngeal flora and can occasionally create a peritonsillar abscess. In 1 out of 400 untreated cases, Lemierre's syndrome occurs.
- Diphtheria
Diphtheria is a potentially life-threatening upper respiratory infection caused by "Corynebacterium diphtheriae" which has been largely eradicated in developed nations since the introduction of childhood vaccination programs, but is still reported in the Third World and increasingly in some areas in Eastern Europe. Antibiotics are effective in the early stages, but recovery is generally slow.
- Others
A few other causes are rare, but possibly fatal, and include parapharyngeal space infections: peritonsillar abscess ("quinsy"), submandibular space infection (Ludwig's angina), and epiglottitis.
Some strains of group A streptococci (GAS) cause severe infection. Severe infections are usually invasive, meaning that the bacteria has entered parts of the body where bacteria are not usually found, such as the blood, lungs, deep muscle or fat tissue. Those at greatest risk include children with chickenpox; persons with suppressed immune systems; burn victims; elderly persons with cellulitis, diabetes, vascular disease, or cancer; and persons taking steroid treatments or chemotherapy. Intravenous drug users also are at high risk. GAS is an important cause of puerperal fever worldwide, causing serious infection and, if not promptly diagnosed and treated, death in newly delivered mothers. Severe GAS disease may also occur in healthy persons with no known risk factors.
All severe GAS infections may lead to shock, multisystem organ failure, and death. Early recognition and treatment are critical. Diagnostic tests include blood counts and urinalysis as well as cultures of blood or fluid from a wound site.
Severe Group A streptococcal infections often occur sporadically but can be spread by person-to-person contact.
Public Health policies internationally reflect differing views of how the close contacts of people affected by severe Group A streptococcal infections should be treated. Health Canada and the US CDC recommend close contacts see their doctor for full evaluation and may require antibiotics; current UK Health Protection Agency guidance is that, for a number of reasons, close contacts should not receive antibiotics unless they are symptomatic but that they should receive information and advice to seek immediate medical attention if they develop symptoms. However, guidance is clearer in the case of mother-baby pairs: both mother and baby should be treated if either develops an invasive GAS infection within the first 28 days following birth (though some evidence suggests that this guidance is not routinely followed in the UK).
The most common cause is viral infection and includes adenovirus, rhinovirus, influenza, coronavirus, and respiratory syncytial virus. It can also be caused by Epstein-Barr virus, herpes simplex virus, cytomegalovirus, or HIV. The second most common cause is bacterial infection of which the predominant is Group A β-hemolytic streptococcus (GABHS), which causes strep throat. Less common bacterial causes include: "Staphylococcus aureus" (including methicillin resistant Staphylococcus aureus or MRSA ),"Streptococcus pneumoniae", "Mycoplasma pneumoniae", "Chlamydia pneumoniae", "Bordetella pertussis", "Fusobacterium" sp., "Corynebacterium diphtheriae", "Treponema pallidum", and "Neisseria gonorrhoeae".
Anaerobic bacteria have been implicated in tonsillitis and a possible role in the acute inflammatory process is supported by several clinical and scientific observations.
Under normal circumstances, as viruses and bacteria enter the body through the nose and mouth, they are filtered in the tonsils. Within the tonsils, white blood cells of the immune system destroy the viruses or bacteria by producing inflammatory cytokines like phospholipase A2, which also lead to fever. The infection may also be present in the throat and surrounding areas, causing inflammation of the pharynx.
Sometimes, tonsillitis is caused by an infection of spirochaeta and treponema, in this case called Vincent's angina or Plaut-Vincent angina.
Since the advent of penicillin in the 1940s, a major preoccupation in the treatment of streptococcal tonsillitis has been the prevention of rheumatic fever, and its major effects on the nervous system (Sydenham's chorea) and heart. Recent evidence would suggest that the rheumatogenic strains of group A beta hemolytic strep have become markedly less prevalent and are now only present in small pockets such as in Salt Lake City, USA. This brings into question the rationale for treating tonsillitis as a means of preventing rheumatic fever.
Complications may rarely include dehydration and kidney failure due to difficulty swallowing, blocked airways due to inflammation, and pharyngitis due to the spread of infection.
An abscess may develop lateral to the tonsil during an infection, typically several days after the onset of tonsillitis. This is termed a peritonsillar abscess (or quinsy).
Rarely, the infection may spread beyond the tonsil resulting in inflammation and infection of the internal jugular vein giving rise to a spreading septicaemia infection (Lemierre's syndrome).
In chronic/recurrent cases (generally defined as seven episodes of tonsillitis in the preceding year, five episodes in each of the preceding two years or three episodes in each of the preceding three years), or in acute cases where the palatine tonsils become so swollen that swallowing is impaired, a tonsillectomy can be performed to remove the tonsils. Patients whose tonsils have been removed are still protected from infection by the rest of their immune system.
In strep throat, very rarely diseases like rheumatic fever or glomerulonephritis can occur. These complications are extremely rare in developed nations but remain a significant problem in poorer nations. Tonsillitis associated with strep throat, if untreated, is hypothesized to lead to pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS).
A subset of children with acute, rapid-onset of tic disorders and obsessive compulsive disorder (OCD) are hypothesized to be due to an autoimmune response to group A beta-hemolytic streptococcal infection (PANDAS).
Some patients may develop pneumonia, lymphadenopathy, or septic arthritis.
Epiglottitis is typically due to a bacterial infection of the epiglottis. While it historically was most often caused by Haemophilus influenzae type B with immunization this is no longer the case. Bacteria that are now typically involved are "Streptococcus pneumoniae", "Streptococcus pyogenes", or "Staphylococcus aureus".
Other possible causes include burns and trauma to the area. Epiglottitis has been linked to crack cocaine usage. Graft versus host disease and lymphoproliferative disorder can also be a cause.
There is low or very-low quality evidence that probiotics may be better than placebo in preventing acute URTIs. Vaccination against influenza viruses, adenoviruses, measles, rubella, "Streptococcus pneumoniae", "Haemophilus influenzae", diphtheria, "Bacillus anthracis", and "Bordetella pertussis" may prevent them from infecting the URT or reduce the severity of the infection.
A drug-resistant strain of scarlet fever, resistant to macrolide antibiotics such as erythromycin, but retaining drug-sensitivity to beta-lactam antibiotics such as penicillin, emerged in Hong Kong in 2011, accounting for at least two deaths in that city—the first such in over a decade. About 60% of circulating strains of the group A "Streptococcus" which cause scarlet fever in Hong Kong are resistant to macrolide antibiotics, says Professor Kwok-yung Yuen, head of Hong Kong University's microbiology department. Previously, observed resistance rates had been 10–30%; the increase is likely the result of overuse of macrolide antibiotics in recent years.
It is a commonly encountered otorhinolaryngological (ENT) emergency.
The number of new cases per year of peritonsillar abscess in the United States has been estimated approximately at 30 cases per 100,000 people. In a study in Northern Ireland, the number of new cases was 10 cases per 100,000 people per year.
In Denmark, the new number of new cases is higher and reaches 41 cases per 100,000 people per year. Younger children who develop a peritonsillar abscess are often immunocompromised and in them, the infection can cause airway obstruction.
In terms of pathophysiology, rhino virus infection resembles the immune response. The viruses do not cause damage to the cells of the upper respiratory tract but rather cause changes in the tight junctions of epithelial cells. This allows the virus to gain access to tissues under the epithelial cells and initiate the innate and adaptive immune responses.
Up to 15% of acute pharyngitis cases may be caused by bacteria, most commonly "Streptococcus pyogenes", a group A streptococcus in streptococcal pharyngitis ("strep throat"). Other bacterial causes are "Streptococcus pneumoniae", "Haemophilus influenzae", "Corynebacterium diphtheriae", "Bordetella pertussis", and "Bacillus anthracis".
Sexually transmitted infections have emerged as causes of oral and pharyngeal infections.
Viruses are common causes of the common cold. Less often, bacteria may also cause pharyngitis. Both of these organisms enter the body via the nose or mouth as aerosolized particles when someone sneezes or coughs. Because many germs are contagious, one can even acquire them from touching utensils, toys, personal care products or door knobs. The most common viruses that causes throat irritation include the common cold virus, influenza, infectious mononucleosis, measles and croup. Most bacteria and viruses usually induce throat irritation during the winter or autumn.
The traditional theory is that a cold can be "caught" by prolonged exposure to cold weather such as rain or winter conditions, which is how the disease got its name. Some of the viruses that cause the common colds are seasonal, occurring more frequently during cold or wet weather. The reason for the seasonality has not been conclusively determined. Possible explanations may include cold temperature-induced changes in the respiratory system, decreased immune response, and low humidity causing an increase in viral transmission rates, perhaps due to dry air allowing small viral droplets to disperse farther and stay in the air longer.
The apparent seasonality may also be due to social factors, such as people spending more time indoors, near infected people, and specifically children at school. There is some controversy over the role of low body temperature as a risk factor for the common cold; the majority of the evidence suggests that it may result in greater susceptibility to infection.
"S. pneumoniae" is responsible for 15–50% of all episodes of community acquired pneumonia, 30–50% of all cases of acute otitis media, and a significant proportion of bloodstream infections and bacterial meningitis.
As estimated by WHO in 2005 it killed about 1.6 million children every year worldwide with 0.7–1 million of them being under the age of five. The majority of these deaths were in developing countries.
The common cold is generally mild and self-limiting with most symptoms generally improving in a week. Half of cases go away in 10 days and 90% in 15 days. Severe complications, if they occur, are usually in the very old, the very young, or those who are immunosuppressed. Secondary bacterial infections may occur resulting in sinusitis, pharyngitis, or an ear infection. It is estimated that sinusitis occurs in 8% and ear infection in 30% of cases.
Due to the importance of disease caused by "S. pneumoniae" several vaccines have been developed to protect against invasive infection. The World Health Organization recommend routine childhood pneumococcal vaccination; it is incorporated into the childhood immunization schedule in a number of countries including the United Kingdom, United States, and South Africa.
PTA usually arises as a complication of an untreated or partially treated episode of acute tonsillitis. The infection, in these cases, spreads to the peritonsillar area (peritonsillitis). This region comprises loose connective tissue and is hence susceptible to formation of an abscess. PTA can also occur "". Both aerobic and anaerobic bacteria can be causative. Commonly involved aerobic pathogens include "Streptococcus, Staphylococcus" and "Haemophilus". The most common anaerobic species include "Fusobacterium necrophorum", " Peptostreptococcus", "Prevotella species", and "Bacteroides".
This disease is most common among the elderly, infants, and children. People with immune deficiency, diabetes, alcoholism, skin ulceration, fungal infections, and impaired lymphatic drainage (e.g., after mastectomy, pelvic surgery, bypass grafting) are also at increased risk.
Laryngitis that continues for more than three weeks is considered chronic. If laryngeal symptoms last for more than three weeks, a referral should be made for further examination, including direct laryngoscopy. The prognosis for chronic laryngitis varies depending on the cause of the laryngitis.
Most cases of erysipelas are due to "Streptococcus pyogenes" (also known as beta-hemolytic group A streptococci), although non-group A streptococci can also be the causative agent. Beta-hemolytic, non-group A streptococci include "Streptococcus agalactiae", also known as group B strep or GBS. Historically, the face was most affected; today, the legs are affected most often. The rash is due to an exotoxin, not the "Streptococcus" bacteria, and is found in areas where no symptoms are present; e.g., the infection may be in the nasopharynx, but the rash is found usually on the upper dermis and superficial lymphatics.
Erysipelas infections can enter the skin through minor trauma, insect bites, dog bites, eczema, athlete's foot, surgical incisions and ulcers and often originate from streptococci bacteria in the subject's own nasal passages. Infection sets in after a small scratch or abrasion spreads, resulting in toxaemia.
Erysipelas does not affect subcutaneous tissue. It does not release pus, only serum or serous fluid. Subcutaneous edema may lead the physician to misdiagnose it as cellulitis, but the style of the rash is much more well circumscribed and sharply marginated than the rash of cellulitis.
Scarlet fever occurs equally in both males and females. Children are most commonly infected, typically between 5–15 years old. Although streptococcal infections can happen at any time of year, infection rates peak in the winter and spring months, typically in colder climates.
The morbidity and mortality of scarlet fever has declined since the 18th and 19th century when there were epidemics caused by this disease. Around 1900 the mortality rate in multiple places reached 25%. In The improvement in prognosis can be attributed to the use of penicillin in the treatment of this disease. The frequency of scarlet fever cases has also been declining over the past century however, there have been several reported outbreaks of the disease in various countries in the past decade. The reason for these recent increases remains unclear in the medical community.
It is a very serious disorder of the back of the throat near the windpipe. The most common cause of epiglottitis is an infection by the bacteria, H influenza. The condition may present all of a sudden with high fever, severe sore throat, difficult and painful swallowing, drooling saliva, hoarse voice, difficulty breathing and malaise. The condition is life-threatening and needs immediate hospitalization. Epiglottitis is treated with antibiotics. Routine vaccination has made epiglottitis very rare but it still does present in some children. Prompt diagnosis and treatment can be life saving.