Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Chronic stress can aggravate allergic conditions. This has been attributed to a T helper 2 (TH2)-predominant response driven by suppression of interleukin 12 by both the autonomic nervous system and the hypothalamic–pituitary–adrenal axis. Stress management in highly susceptible individuals may improve symptoms.
Allergic diseases are strongly familial: identical twins are likely to have the same allergic diseases about 70% of the time; the same allergy occurs about 40% of the time in non-identical twins. Allergic parents are more likely to have allergic children, and those children's allergies are likely to be more severe than those in children of non-allergic parents. Some allergies, however, are not consistent along genealogies; parents who are allergic to peanuts may have children who are allergic to ragweed. It seems that the likelihood of developing allergies is inherited and related to an irregularity in the immune system, but the specific allergen is not.
The risk of allergic sensitization and the development of allergies varies with age, with young children most at risk. Several studies have shown that IgE levels are highest in childhood and fall rapidly between the ages of 10 and 30 years. The peak prevalence of hay fever is highest in children and young adults and the incidence of asthma is highest in children under 10.
Overall, boys have a higher risk of developing allergies than girls, although for some diseases, namely asthma in young adults, females are more likely to be affected. These differences between the sexes tend to decrease in adulthood.
Ethnicity may play a role in some allergies; however, racial factors have been difficult to separate from environmental influences and changes due to migration. It has been suggested that different genetic loci are responsible for asthma, to be specific, in people of European, Hispanic, Asian, and African origins.
Nickel allergy results in a skin response (rash) after the skin comes in direct and sustained contact with any item which releases a large amount of free nickel from its surface. The skin reaction can occur at the site of contact, or sometimes spread beyond to the rest of the body. Cutaneous exposure can cause localized erythematous, pruritic, vesicular, and scaly patches. Ingestion of nickel may cause a systemic reaction, that will affect a larger skin surface. Examples of systemic reactions can include hand dermatitis, baboon syndrome, or generalized eczematous reactions.
Within the workplace, individuals may be exposed to significant amounts of nickel, airborne from the combustion of fossil fuels, or from contact with tools that are nickel-plated. Historically, workplaces where prolonged contact with soluble nickel has been high, have shown high risks for allergic contact nickel dermatitis. For example, nickel dermatitis was common in the past among nickel platers. Due to improved industrial and personal hygiene practices, however, over the past several decades, reports of nickel sensitivity in workplaces, such as the electroplating industry, have been sparse. In the workplace, exposure reduction includes personal protection equipment and other risk management measures.
In immunology, the term sensitization is used for the following concepts:
- Immunization by inducing an adaptive response in the immune system. In this sense, sensitization is the term more often in usage for induction of allergic responses.
- To bind antibodies to cells such as erythrocytes in advance of performing an immunological test such as a complement-fixation test or a Coombs test. The antibodies are bound to the cells in their Fab regions in the preparation.
- To bind antibodies or soluble antigens chemically or by adsorption to appropriate biological entities such as erythrocytes or particles made of gelatin or latex for passive aggregation tests.
Those particles themselves are biologically inactive except for serving as antigens against the primary antibodies or as carriers of the antigens. When antibodies are used in the preparation, they are bound to the erythrocyte or particles in their Fab regions. Thus the step follows requires the secondary antibodies against those primary antibodies, that is, the secondary antibodies must have binding specificity to the primary antibodies including to their Fc regions.
The most common food allergens account for about 90% of all allergic reactions; in adults they include shellfish, peanuts, tree nuts, fish, and egg. In children, they include milk, eggs, peanuts, and tree nuts. Six to 8% of children under the age of three have food allergies and nearly 4% of adults have food allergies.
For reasons not entirely understood, the diagnosis of food allergies has apparently become more common in Western nations recently. In the United States, food allergy affects as many as 5% of infants less than three years of age and 3% to 4% of adults. A similar prevalence is found in Canada.
About 75% of children who have allergies to milk protein are able to tolerate baked-in milk products, i.e., muffins, cookies, cake, and hydrolyzed formulas.
About 50% of children with allergies to milk, egg, soy, peanuts, tree nuts, and wheat will outgrow their allergy by the age of 6. Those who are still allergic by the age of 12 or so have less than an 8% chance of outgrowing the allergy.
Peanut and tree nut allergies are less likely to be outgrown, although evidence now shows that about 20% of those with peanut allergies and 9% of those with tree nut allergies will outgrow them.
In Japan, allergy to buckwheat flour, used for soba noodles, is more common than peanuts, tree nuts or foods made from soy beans.
Corn allergy may also be prevalent in many populations, although it may be difficult to recognize in areas such as the United States and Canada where corn derivatives are common in the food supply.
Food allergies develop more easily in people with the atopic syndrome, a very common combination of diseases: allergic rhinitis and conjunctivitis, eczema, and asthma. The syndrome has a strong inherited component; a family history of allergic diseases can be indicative of the atopic syndrome.
Atopic reactions are caused by localized hypersensitivity reaction to an allergen. Atopy appears to show a strong hereditary component. One study concludes that the risk of developing atopic dermatitis (3%) or atopy in general (7%) "increases by a factor of two with each first-degree family member already suffering from atopy". As well, maternal stress and perinatal programming is increasingly understood as a root cause of atopy, finding that "...trauma may be a particularly robust potentiator of the cascade of biological events that increase vulnerability to atopy and may help explain the increased risk found in low-income urban populations.”
Environmental factors are also thought to play a role in the development of atopy, and the 'hygiene hypothesis' is one of the models that may explain the steep rise in the incidence of atopic diseases, though this hypothesis is incomplete and in some cases, contradictory to findings. This hypothesis proposes that excess 'cleanliness' in an infant's or child's environment can lead to a decline in the number of infectious stimuli that are necessary for the proper development of the immune system. The decrease in exposure to infectious stimuli may result in an imbalance between the infectious-response ("protective") elements and the allergic-response ("false alarm") elements within the immune system.
Some studies also suggest that the maternal diet during pregnancy may be a causal factor in atopic diseases (including asthma) in offspring, suggesting that consumption of antioxidants, certain lipids, and/or a Mediterranean diet may help to prevent atopic diseases.
The multicenter PARSIFAL study in 2006, involving 6630 children age 5 to 13 in 5 European countries, suggested that reduced use of antibiotics and antipyretics is associated with a reduced risk of allergic disease in children.
Prevention involves an exclusion diet and vigilant avoidance of foods that may be contaminated with tree nuts, nut particles, or oils extracted from nuts. In the United States, the federal Food Allergen Labeling and Consumer Protection Act (FALCPA) requires that any packaged food product that contains tree nuts as an ingredient must list the specific tree nut on the label. Foods that almost always contain tree nuts include pesto, marzipan, Nutella, baklava, pralines, nougat, gianduja, and turrón. Other common foods that may contain tree nuts include cereals, crackers, cookies, baked goods, candy, chocolates, energy/granola bars, flavored coffee, frozen desserts, marinades, barbecue sauces, and some cold cuts, such as mortadella. Tree nut oils (especially shea nut) are also sometimes used in lotions and soaps. Asian and African restaurants, ice cream parlors, and bakeries are considered high-risk for people with tree nut allergy due to the common use of nuts and the possibility of cross contamination.
There is a strong genetic predisposition toward atopic allergies, especially on the maternal side. Because of the strong familial evidence, investigators have tried to map susceptibility genes for atopy. Genes for atopy (C11orf30, STAT6, SLC25A46, HLA-DQB1, IL1RL1/IL18R1, TLR1/TLR6/TLR10, LPP, MYC/PVT1, IL2/ADAD1, HLA-B/MICA) tend to be involved in allergic responses or other components of the immune system. C11orf30 seems to be the most relevant for atopy as it may increase susceptibility to poly-sensitization.
A tree nut allergy is a hypersensitivity to dietary substances from tree nuts and edible tree seeds causing an overreaction of the immune system which may lead to severe physical symptoms. Tree nuts include, but are not limited to, almonds, Brazil nuts, cashews, chestnuts, filberts/hazelnuts, macadamia nuts, pecans, pistachios, pine nuts, shea nuts and walnuts.
Tree nut allergies are distinct from peanut allergy, as peanuts are legumes, whereas a tree nut is a hard-shelled nut.
Allergic conjunctivitis occurs more frequently among those with allergic conditions, with the symptoms having a seasonal correlation.
Allergic conjunctivitis is a frequent condition as it is estimated to affect 20 percent of the population on an annual basis and approximately one-half of these people have a personal or family history of atopy.
Giant papillary conjunctivitis accounts for 0.5–1.0% of eye disease in most countries.
The Allergic Alсоhоl from the original on 30 April 2012. Retrieved 2010-04-08.
The cause of allergic conjunctivitis is an allergic reaction of the body's immune system to an allergen. Allergic conjunctivitis is common in people who have other signs of allergic disease such as hay fever, asthma and eczema.
Among the most common allergens that cause conjunctivitis are:
- Pollen from trees, grass and ragweed
- Animal skin and secretions such as saliva
- Perfumes
- Cosmetics
- Skin medicines
- Air pollution
- Smoke
- Dust mites
- Balsam of Peru (used in food and drink for flavoring, in perfumes and toiletries for fragrance, and in medicine and pharmaceutical items for healing properties)
- Eye drops
Most cases of seasonal conjunctivitis are due to pollen and occur in the hay fever season, grass pollens in early summer and various other pollens and moulds may cause symptoms later in the summer.
Common allergens implicated include the following:
- Nickel (nickel sulfate hexahydrate) – has been recognized as a significant cause of allergy. This metal is frequently encountered in stainless steel cookware, jewelry and clasps or buttons on clothing. Current estimates gauge are that roughly 2.5 million US adults and 250,000 children suffer from nickel allergy, which costs an estimated $5.7 billion per year for treatment of symptoms. A significant portion of nickel allergy is preventable.
- Gold (gold sodium thiosulfate) – precious metal often found in jewelry and dental materials
- Balsam of Peru (Myroxylon pereirae) – used in food and drink for flavoring, in perfumes and toiletries for fragrance, and in medicine and pharmaceutical items for healing properties; derived from tree resin. It may also be a component of artificial vanilla and/or cinnamon flavorings.
- Chromium – used in the tanning of leather. Also a component of uncured cement/mortar, facial cosmetics and some bar soaps.
- Urushiol – oily coating from plants of Toxicodendron genus – poison ivy, poison oak, and poison sumac. Also found in mango plants and cashews.
- Sap from certain species of mangrove and agave
- Thiomersal – mercury compound used in local antiseptics and in vaccines
- Neomycin – topical antibiotic common in first aid creams and ointments, cosmetics, deodorant, soap, and pet food. Found by itself, or in Neosporin or Triple Antibiotic
- Fragrance mix – group of the eight most common fragrance allergens found in foods, cosmetic products, insecticides, antiseptics, soaps, perfumes, and dental products
- Formaldehyde – preservative with multiple uses, "e.g.", in paper products, paints, medications, household cleaners, cosmetic products, and fabric finishes. Often released into products by the use of formaldehyde releasers such as imidazolidinyl urea, diazolidinyl urea, Quaternium-15, DMDM Hydantoin, and 2-bromo-2-nitropropane-1,3-diol.
- Cobalt chloride – metal found in medical products; hair dye; antiperspirant; metal-plated objects such as snaps, buttons or tools; and in cobalt blue pigment
- Bacitracin – topical antibiotic found by itself, or as Polysporin or Triple Antibiotic
- Quaternium-15 – preservative in cosmetic products (self-tanners, shampoo, nail polish, sunscreen) and in industrial products (polishes, paints and waxes).
- Colophony (Rosin) – rosin, sap or sawdust typically from spruce or fir trees
- Topical steroid – "see" steroid allergy
- Photographic developers, especially those containing metol
- Topical anesthetics – such as pramoxine or diphenhydramine, after prolonged use
- Isothiazolinones – preservatives used in many personal care, household, and commercial products.
- Mercaptobenzothiazole – in rubber products, notably shoes, gloves, and car tires.
- Soluble salts of platinum – "see" platinosis
According to the hygiene hypothesis, when children are brought up exposed to allergens in the environment at a young age, their immune system is more likely to tolerate them, while children brought up in a modern "sanitary" environment are less likely to be exposed to those allergens at a young age, and, when they are finally exposed, develop allergies. There is some support for this hypothesis with respect to AD. Those exposed to dogs while growing up have a lower risk of atopic dermatitis. There is also support from epidemiological studies for a protective role for helminths against AD. Likewise children with poor hygiene are at a lower risk for developing AD, as are children who drink unpasteurised milk.
In a small percentage of cases, atopic dermatitis is caused by sensitization to foods. Also, exposure to allergens, either from food or the environment, can exacerbate existing atopic dermatitis. Exposure to dust mites, for example, is believed to contribute to one's risk of developing AD. A diet high in fruits seems to have a protective effect against AD, whereas the opposite seems true for fast foods. Atopic dermatitis sometimes appears to be associated with celiac disease and non-celiac gluten sensitivity, and the improvement with a gluten-free diet indicates that gluten is a causative agent in these cases.
Allergic contact dermatitis (ACD) is a form of contact dermatitis that is the manifestation of an allergic response caused by contact with a substance; the other type being irritant contact dermatitis (ICD).
Although less common than ICD, ACD is accepted to be the most prevalent form of immunotoxicity found in humans. By its allergic nature, this form of contact dermatitis is a hypersensitive reaction that is atypical within the population. The mechanisms by which these reactions occur are complex, with many levels of fine control. Their immunology centres on the interaction of immunoregulatory cytokines and discrete subpopulations of T lymphocytes.
Prevention measures include avoidance of the irritant through its removal from the workplace or through technical shielding by the use of potent irritants in closed systems or automation, irritant replacement or removal and personal protection of the workers.
Occupational skin diseases are ranked among the top five occupational diseases in many countries.
Contact Dermatitis due to irritation is inflammation of the skin which results from a contact with an irritant. It has been observed that this type of dermatitis does not require prior sensitization of the immune system. There have been studies to support that past or present atopic dermatitis is a risk factor for this type of dermatitis. Common irritants include detergents, acids, alkalies, oils, organic solvents and reducing agents.
The acute form of this dermatitis develops on exposure of the skin to a strong irritant or caustic chemical. This exposure can occur as a result of accident at a workplace . The irritant reaction starts to increase in its intensity within minutes to hours of exposure to the irritant and reaches its peak quickly. After the reaction has reached its peak level, it starts to heal. This process is known as decrescendo phenomenon. The most frequent potent irritants leading to this type of dermatitis are acids and alkaline solutions. The symptoms include redness and swelling of the skin along with the formation of blisters.
The chronic form occurs as a result of repeated exposure of the skin to weak irritants over long periods of time.
Clinical manifestations of the contact dermatitis are also modified by external factors such as environmental factors (mechanical pressure, temperature, and humidity) and predisposing characteristics of the individual (age, sex, ethnic origin, preexisting skin disease, atopic skin diathesis, and anatomic region exposed.
Another occupational skin disease is glove-related hand urticaria, believed to be caused by repeated wearing and removal of the gloves. It has been reported as an occupational problem among the health care workers. The reaction is caused by the latex or the nitrile present in the gloves.
Reactions to chemical components of the diet are more common than true food allergies. Although, there is no evidence to support this. They are caused by various organic chemicals occurring naturally in a wide variety of foods, both of animal and vegetable origin more often than to food additives, preservatives, colourings and flavourings, such as sulfites or dyes.
Both natural and artificial ingredients may cause adverse reactions in sensitive people if consumed in sufficient amount, the degree of sensitivity varying between individuals.
Pharmacological responses to naturally occurring compounds in food, or chemical intolerance, can occur in individuals from both allergic and non-allergic family backgrounds. Symptoms may begin at any age, and may develop quickly or slowly. Triggers may range from a viral infection or illness to environmental chemical exposure. It occurs more commonly in women, which may be because of hormone differences, as many food chemicals mimic hormones.
A deficiency in digestive enzymes can also cause some types of food intolerances. Lactose intolerance is a result of the body not producing sufficient lactase to digest the lactose in milk; dairy foods which are lower in lactose, such as cheese, are less likely to trigger a reaction in this case. Another carbohydrate intolerance caused by enzyme deficiency is hereditary fructose intolerance.
Celiac disease, an autoimmune disorder caused by an immune response to the protein gluten, results in gluten intolerance and can lead to temporary lactose intolerance.
The most widely distributed naturally occurring food chemical capable of provoking reactions is salicylate, although tartrazine and benzoic acid are well recognised in susceptible individuals. Benzoates and salicylates occur naturally in many foods, including fruits, juices, vegetables, spices, herbs, nuts, tea, wines, and coffee. Salicylate sensitivity causes reactions to not only aspirin and NSAIDs but also foods in which salicylates naturally occur, such as cherries.
Other natural chemicals which commonly cause reactions and cross reactivity include amines, nitrates, sulphites and some antioxidants. Chemicals involved in aroma and flavour are often suspect.
The classification or avoidance of foods based on botanical families bears no relationship to their chemical content and is not relevant in the management of food intolerance.
Salicylate-containing foods include apples, citrus fruits, strawberries, tomatoes, and wine, while reactions to chocolate, cheese, bananas, avocado, tomato or wine point to amines as the likely food chemical. Thus, exclusion of single foods does not necessarily identify the chemical responsible as several chemicals can be present in a food, the patient may be sensitive to multiple food chemicals and reaction more likely to occur when foods containing the triggering substance are eaten in a combined quantity that exceeds the patient's sensitivity thresholds. People with food sensitivities have different sensitivity thresholds, and so more sensitive people will react to much smaller amounts of the substance.
Food intolerance is a detrimental reaction, often delayed, to a food, beverage, food additive, or compound found in foods that produces symptoms in one or more body organs and systems, but generally refers to reactions other than food allergy. Food hypersensitivity is used to refer broadly to both food intolerances and food allergies.
Food allergies are immune reactions, typically an IgE reaction caused by the release of histamine but also encompassing non-IgE immune responses. This mechanism causes allergies to typically give immediate reaction (a few minutes to a few hours) to foods.
Food intolerances can be classified according to their mechanism. Intolerance can result from the absence of specific chemicals or enzymes needed to digest a food substance, as in hereditary fructose intolerance. It may be a result of an abnormality in the body's ability to absorb nutrients, as occurs in fructose malabsorption. Food intolerance reactions can occur to naturally occurring chemicals in foods, as in salicylate sensitivity. Drugs sourced from plants, such as aspirin, can also cause these kinds of reactions.
Occupational lung diseases include asbestosis among asbestos miners and those who work with friable asbestos insulation, as well as black lung (coalworker's pneumoconiosis) among coal miners, silicosis among miners and quarrying and tunnel operators and byssinosis among workers in parts of the cotton textile industry.
Occupational asthma has a vast number of occupations at risk.
Bad indoor air quality may predispose for diseases in the lungs as well as in other parts of the body.
The number of workers in the United States exposed to beryllium vary but has been estimated to be as high as 800,000 during the 1960s and 1970s. A more recent study estimated the number of exposed workers in the United States from in 1996 to be around 134,000.
The rate of workers becoming sensitized to beryllium varies based on genetics and exposure levels. In one study researchers found the prevalence of beryllium sensitization to range from 9 - 19% depending on the industry. Many workers who are found to be sensitive to beryllium also meet the diagnostic criteria for CBD. In one study of nuclear workers, among those who were sensitized to beryllium, 66% were found to have CBD as well. The rate of progression from beryllium sensitization to CBD has been estimated to be approximately 6-8% per year. Stopping exposure to beryllium in those sensitized has not been definitively shown to stop the progression to CBD.
The overall prevalence of CBD among workers exposed to beryllium has ranged from 1 – 5% depending on industry and time period of study.
The general population is unlikely to develop acute or chronic beryllium disease because ambient air levels of beryllium are normally very low (<0.03 ng/m). However, a study found 1% of people living within 3/4 of a mile of a beryllium plant in Lorain, Ohio, had berylliosis after exposure to concentrations estimated to be less than 1 milligram per cubic metre of air. In the United States the Beryllium Case Registry contained 900 records, early cases relating to extraction and fluorescent lamp manufacture, later ones coming from the aerospace, ceramics and metallurgical industries.
There are limited national and international studies into the burden of ABPA, made more difficult by a non-standardized diagnostic criteria. Estimates of between 0.5–3.5% have been made for ABPA burden in asthma, and 1–17.7% in CF. Five national cohorts, detecting ABPA prevalence in asthma (based on GINA estimates), were used in a recent meta-analysis to produce an estimate of the global burden of ABPA complicating asthma. From 193 million asthma sufferers worldwide, ABPA prevalence in asthma is estimated between the extremes of 1.35–6.77 million sufferers, using 0.7–3.5% attrition rates. A compromise at 2.5% attrition has also been proposed, placing global burden at around 4.8 million people affected. The Eastern Mediterranean region had the lowest estimated prevalence, with a predicted case burden of 351,000; collectively, the Americas had the highest predicted burden at 1,461,000 cases. These are likely underestimates of total prevalence, given the exclusion of CF patients and children from the study, as well as diagnostic testing being limited in less developed regions.
Allergic bronchopulmonary aspergillosis (ABPA) is a condition characterised by an exaggerated response of the immune system (a hypersensitivity response) to the fungus "Aspergillus" (most commonly "Aspergillus fumigatus"). It occurs most often in patients with asthma or cystic fibrosis. "Aspergillus" spores are ubiquitous in soil and are commonly found in the sputum of healthy individuals. "A. fumigatus" is responsible for a spectrum of lung diseases known as aspergilloses.
ABPA causes airway inflammation, leading to bronchiectasis—a condition marked by abnormal dilation of the airways. Left untreated, the immune system and fungal spores can damage sensitive lung tissues and lead to scarring.
The exact criteria for the diagnosis of ABPA are not agreed upon. Chest X-rays and CT scans, raised blood levels of IgE and eosinophils, immunological tests for "Aspergillus" together with sputum staining and sputum cultures can be useful. Treatment consists of corticosteroids and antifungal medications.