Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In the US, the Dietary Reference Intake for adults is 55 µg/day. In the UK it is 75 µg/day for adult males and 60 µg/day for adult females. 55 µg/day recommendation is based on full expression of plasma glutathione peroxidase. Selenoprotein P is a better indicator of selenium nutritional status, and full expression of it would require more than 66 µg/day.
Severe zinc deficiency is rare, and is mainly seen in persons with acrodermatitis enteropathica, a severe defect in zinc absorption due to a congenital deficiency in the zinc carrier protein ZIP4 in the enterocyte. Mild zinc deficiency due to reduced dietary intake is common. Conservative estimates suggest that 25% of the world's population is at risk of zinc deficiency. Zinc deficiency is thought to be a leading cause of infant mortality.
Providing micronutrients, including zinc, to humans is one of the four solutions to major global problems identified in the Copenhagen Consensus from an international panel of economists.
It can occur in patients with severely compromised intestinal function, those undergoing total parenteral nutrition, those who have had gastrointestinal bypass surgery, and also in persons of advanced age (i.e., over 90).
People dependent on food grown from selenium-deficient soil may be at risk for deficiency. Increased risk for developing various diseases has also been noted, even when certain individuals lack optimal amounts of selenium, but not enough to be classified as deficient.
For some time now, it has been reported in medical literature that a pattern of side-effects possibly associated with cholesterol-lowering drugs (e.g., statins) may resemble the pathology of selenium deficiency.
Zinc deficiency in children can cause delayed growth and has been claimed to be the cause of stunted growth in one third of the world's population.
Folate is found in leafy green vegetables. Multi-vitamins also tend to include Folate as well as many other B vitamins. B vitamins, such as Folate, are water-soluble and excess is excreted in the urine.
When cooking, use of steaming, a food steamer, or a microwave oven can help keep more folate content in the cooked foods, thus helping to prevent folate deficiency.
Folate deficiency during human pregnancy has been associated with an increased risk of infant neural tube defects. Such deficiency during the first four weeks of gestation can result in structural and developmental problems. NIH guidelines recommend oral B vitamin supplements to decrease these risks near the time of conception and during the first month of pregnancy.
Some situations that increase the need for folate include the following:
- hemorrhage
- kidney dialysis
- liver disease
- malabsorption, including celiac disease and fructose malabsorption
- pregnancy and lactation (breastfeeding)
- tobacco smoking
- alcohol consumption
In plants a micronutrient deficiency (or trace mineral deficiency) is a physiological plant disorder which occurs when a micronutrient is deficient in the soil in which a plant grows. Micronutrients are distinguished from macronutrients (nitrogen, phosphorus, sulfur, potassium, calcium and magnesium) by the relatively low quantities needed by the plant.
A number of elements are known to be needed in these small amounts for proper plant growth and development. Nutrient deficiencies in these areas can adversely affect plant growth and development. Some of the best known trace mineral deficiencies include: zinc deficiency, boron deficiency, iron deficiency, and manganese deficiency.
In areas where there is little iodine in the diet, typically remote inland areas and semi-arid equatorial climates where no marine foods are eaten, iodine deficiency gives rise to hypothyroidism, symptoms of which are extreme fatigue, goiter, mental slowing, depression, weight gain, and low basal body temperatures.
Iodine deficiency is the leading cause of preventable mental retardation, a result which occurs primarily when babies or small children are rendered hypothyroidic by a lack of the element. The addition of iodine to table salt has largely eliminated this problem in the wealthier nations, but as of March 2006, iodine deficiency remained a serious public health problem in the developing world.
Iodine deficiency is also a problem in certain areas of Europe. In Germany it has been estimated to cause a billion dollars in health care costs per year. A modelling analysis suggests universal iodine supplementation for pregnant women in England may save £199 (2013 UK pounds) to the health service per pregnant woman and save £4476 per pregnant woman in societal costs.
Following is a list of potential risk factors that may lead to iodine deficiency:
1. Low dietary iodine
2. Selenium deficiency
3. Pregnancy
4. Exposure to radiation
5. Increased intake/plasma levels of goitrogens, such as calcium
6. Gender (higher occurrence in women)
7. Smoking tobacco
8. Alcohol (reduced prevalence in users)
9. Oral contraceptives (reduced prevalence in users)
10. Perchlorates
11. Thiocyanates
12. Age (for different types of iodine deficiency at different ages)
In the U.S., the use of iodine has decreased over concerns of overdoses since mid-20th century, and the iodine antagonists bromine, perchlorate and fluoride have become more ubiquitous. In particular, around 1980 the practice of using potassium iodate as dough conditioner in bread and baked goods was gradually replaced by the use of other conditioning agents such as bromide.
In the developing world the deficiency is very widespread, with significant levels of deficiency in Africa, India, and South and Central America. This is theorized to be due to low intakes of animal products, particularly among the poor.
B deficiency is more common in the elderly. This is because B absorption decreases greatly in the presence of atrophic gastritis, which is common in the elderly.
The 2000 Tufts University study found no correlation between eating meat and differences in B serum levels, likely due to a combination of fortified foods and B absorption disorders.
Micronutrient deficiencies affect more than two billion people of all ages in both developing and industrialized countries. They are the cause of some diseases, exacerbate others and are recognized as having an important impact on worldwide health. Important micronutrients include iodine, iron, zinc, calcium, selenium, fluorine, and vitamins A, B, B, B, B, B, and C.
Micronutrient deficiencies are associated with 10% of all children's deaths, and are therefore of special concern to those involved with child welfare. Deficiencies of essential vitamins or minerals such as Vitamin A, iron, and zinc may be caused by long-term shortages of nutritious food or by infections such as intestinal worms. They may also be caused or exacerbated when illnesses (such as diarrhoea or malaria) cause rapid loss of nutrients through feces or vomit.
The National Institutes of Health has found that "Large amounts of folic acid can mask the damaging effects of vitamin B deficiency by correcting the megaloblastic anemia caused by vitamin B deficiency without correcting the neurological damage that also occurs", there are also indications that "high serum folate levels might not only mask vitamin B deficiency, but could also exacerbate the anemia and worsen the cognitive symptoms associated with vitamin B deficiency". Due to the fact that in the United States legislation has required enriched flour to contain folic acid to reduce cases of fetal neural-tube defects, consumers may be ingesting more than they realize. To counter the masking effect of B deficiency the NIH recommends "folic acid intake from fortified food and supplements should not exceed 1,000 μg daily in healthy adults." Most importantly, B deficiency needs to be treated with B repletion. Limiting folic acid will not counter the irrevocable neurological damage that is caused by untreated B deficiency.
It is hard to consider Keshan disease extremely preventable because the only way to ensure that the individual is getting enough selenium would be to test the soil in the area. However, one way that selenium intake can be improved is to increase intake of foods that are rich with selenium. Examples include onions, canned tuna, beef, cod, turkey, chicken breast, enriched pasta, egg, cottage cheese, oatmeal, white or brown rice, and garlic. If the individual lives in an area that does not have selenium enriched soil, dietary supplementation should be considered. To determine whether or not an individual is selenium deficient, blood testing is performed.
A vitamin deficiency can cause a disease or syndrome known as an avitaminosis or hypovitaminosis. This usually refers to a long-term deficiency of a vitamin. When caused by inadequate nutrition it can be classed as a "primary deficiency", and when due to an underlying disorder such as malabsorption it can be classed as a "secondary deficiency". An underlying disorder may be metabolic as in a defect converting tryptophan to niacin. It can also be the result of lifestyle choices including smoking and alcohol consumption.
Examples are vitamin A deficiency, folate deficiency, scurvy, vitamin D deficiency, vitamin E deficiency, and vitamin K deficiency. In the medical literature, any of these may also be called by names on the pattern of "hypovitaminosis" or "avitaminosis" + "[letter of vitamin]", for example, hypovitaminosis A, hypovitaminosis C, hypovitaminosis D.
Conversely hypervitaminosis is the syndrome of symptoms caused by over-retention of fat-soluble vitamins in the body.
- Vitamin A deficiency can cause keratomalacia.
- Thiamine (vitamin B1) deficiency causes beriberi and Wernicke–Korsakoff syndrome.
- Riboflavin (vitamin B2) deficiency causes ariboflavinosis.
- Niacin (vitamin B3) deficiency causes pellagra.
- Pantothenic acid (vitamin B5) deficiency causes chronic paresthesia.
- Vitamin B6
- Biotin (vitamin B7) deficiency negatively affects fertility and hair/skin growth. Deficiency can be caused by poor diet or genetic factors (such as mutations in the BTD gene, see multiple carboxylase deficiency).
- Folate (vitamin B9) deficiency is associated with numerous health problems. Fortification of certain foods with folate has drastically reduced the incidence of neural tube defects in countries where such fortification takes place. Deficiency can result from poor diet or genetic factors (such as mutations in the MTHFR gene that lead to compromised folate metabolism).
- Vitamin B12 (cobalamin) deficiency can lead to pernicious anemia, megaloblastic anemia, subacute combined degeneration of spinal cord, and methylmalonic acidemia among other conditions.
- Vitamin C (ascorbic acid) short-term deficiency can lead to weakness, weight loss and general aches and pains. Longer-term depletion may affect the connective tissue. Persistent vitamin C deficiency leads to scurvy.
- Vitamin D (cholecalciferol) deficiency is a known cause of rickets, and has been linked to numerous health problems.
- Vitamin E deficiency causes nerve problems due to poor conduction of electrical impulses along nerves due to changes in nerve membrane structure and function.
- Vitamin K (phylloquinone or menaquinone) deficiency causes impaired coagulation and has also been implicated in osteoporosis
Keshan disease is a congestive cardiomyopathy caused by a combination of dietary deficiency of selenium and the presence of a mutated strain of Coxsackievirus, named after Keshan County of Heilongjiang province, Northeast China, where symptoms were first noted. These symptoms were later found prevalent in a wide belt extending from northeast to southwest China, all due to selenium-deficient soil. The disease peaked in 1960–1970, claiming thousands of lives.
Often fatal, the disease afflicts children and women of child bearing age, characterized by heart failure and pulmonary edema. Over decades, supplementation with selenium reduced this affliction.
It had been linked to the coxsackie B virus. Current research suggests that the lack of selenium results in a more virulent strain of the coxsackievirus becoming the dominant viral species present in the population of virus, but the mechanism of this selection event is unclear.
The disease got its name from the province in which it was discovered: Keshan, China. Since its discovery, it can also be found in New Zealand and Finland. Keshan disease results from a selenium deficiency which is a nutrient we receive in our diet from eating foods that were grown in selenium enriched soils. Because of that factor, Keshan deficiency can be found anywhere that the level of selenium present in the soil is low. An individual with Keshan disease will have an abnormally large heart. Keshan disease can also lead to higher rates of cancer, cardiovascular disease, hypertension, and strokes. In addition, an individual can experience eczema, psoriasis, arthritis, cataracts, alcoholism, and infections.
Mineral deficiency is a lack of dietary minerals, the micronutrients that are needed for an organism's proper health. The cause may be a poor diet, impaired uptake of the minerals that are consumed or a dysfunction in the organism's use of the mineral after it is absorbed. These deficiencies can result in many disorders including anemia and goitre. Examples of mineral deficiency include, zinc deficiency, iron deficiency, and magnesium deficiency.
In dairy breeds, the disease may occur in calves between birth and 4 months of age. In rustic breeds or beef cattle, heifers and young steers up to 12 months of age can be affected. In calves, muscles in upper portion of the front legs and the hind legs are degraded, causing the animal to have a stiff gait and it may have difficulty standing. The disease may also present in the form of respiratory distress.
Iron is needed for bacterial growth making its bioavailability an important factor in controlling infection. Blood plasma as a result carries iron tightly bound to transferrin, which is taken up by cells by endocytosing transferrin, thus preventing its access to bacteria. Between 15 and 20 percent of the protein content in human milk consists of lactoferrin that binds iron. As a comparison, in cow's milk, this is only 2 percent. As a result, breast fed babies have fewer infections. Lactoferrin is also concentrated in tears, saliva and at wounds to bind iron to limit bacterial growth. Egg white contains 12% conalbumin to withhold it from bacteria that get through the egg shell (for this reason, prior to antibiotics, egg white was used to treat infections).
To reduce bacterial growth, plasma concentrations of iron are lowered in a variety of systemic inflammatory states due to increased production of hepcidin which is mainly released by the liver in response to increased production of pro-inflammatory cytokines such as Interleukin-6. This functional iron deficiency will resolve once the source of inflammation is rectified; however, if not resolved, it can progress to Anaemia of Chronic Inflammation. The underlying inflammation can be caused by fever, inflammatory bowel disease, infections, Chronic Heart Failure (CHF), carcinomas, or following surgery.
Reflecting this link between iron bioavailability and bacterial growth, the taking of oral iron supplements in excess of 200 mg/day causes a relative overabundance of iron that can alter the types of bacteria that are present within the gut. There have been concerns regarding parenteral iron being administered whilst bacteremia is present, although this has not been borne out in clinical practice. A moderate iron deficiency, in contrast, can provide protection against acute infection, especially against organisms that reside within hepatocytes and macrophages, such as malaria and tuberculosis. This is mainly beneficial in regions with a high prevalence of these diseases and where standard treatment is unavailable.
Based on the results of worldwide screening of biotinidase deficiency in 1991, the incidence of the disorder is:
5 in 137,401 for profound biotinidase deficiency
- One in 109,921 for partial biotinidase deficiency
- One in 61,067 for the combined incidence of profound and partial biotinidase deficiency
- Carrier frequency in the general population is approximately one in 120.
Mild iron deficiency can be prevented or corrected by eating iron-rich foods and by cooking in an iron skillet. Because iron is a requirement for most plants and animals, a wide range of foods provide iron. Good sources of dietary iron have heme-iron, as this is most easily absorbed and is not inhibited by medication or other dietary components. Three examples are red meat, poultry, and insects. Non-heme sources do contain iron, though it has reduced bioavailability. Examples are lentils, beans, leafy vegetables, pistachios, tofu, fortified bread, and fortified breakfast cereals.
Iron from different foods is absorbed and processed differently by the body; for instance, iron in meat (heme-iron source) is more easily absorbed than iron in grains and vegetables ("non-heme" iron sources). Minerals and chemicals in one type of food may also inhibit absorption of iron from another type of food eaten at the same time. For example, oxalates and phytic acid form insoluble complexes which bind iron in the gut before it can be absorbed.
Because iron from plant sources is less easily absorbed than the heme-bound iron of animal sources, vegetarians and vegans should have a somewhat higher total daily iron intake than those who eat meat, fish or poultry. Legumes and dark-green leafy vegetables like broccoli, kale and oriental greens are especially good sources of iron for vegetarians and vegans. However, spinach and Swiss chard contain oxalates which bind iron, making it almost entirely unavailable for absorption. Iron from non-heme sources is more readily absorbed if consumed with foods that contain either heme-bound iron or vitamin C. This is due to a hypothesised "meat factor" which enhances iron absorption.
Following are two tables showing the richest foods in heme and non-heme iron.
In both tables, food serving sizes may differ from the usual 100g quantity for relevancy reasons. Arbitrarily, the guideline is set at 18 mg, which is the USDA Recommended Dietary Allowance for women aged between 19 and 50.
Iron deficiency can have serious health consequences that diet may not be able to quickly correct; hence, an iron supplement is often necessary if the iron deficiency has become symptomatic.
The cause of KBD remains controversial. Studies of the pathogenesis and risk factors of KBD have proposed selenium deficiency, inorganic (manganese, phosphate...) and organic matter (humic and fulvic acids) in drinking water, fungi on self-produced storage grain (Alternaria sp., Fusarium sp.), producing trichotecene (T2) mycotoxins.
Most authors accept that the cause of KBD is multifactorial, selenium deficiency being the underlying factor that predisposes the target cells (chondrocytes) to oxidative stress from free-radical carriers such as mycotoxins in storage grain and fulvic acid in drinking water.
In Tibet, epidemiological studies carried out in 1995–1996 by MSF and coll. showed that KBD was associated with iodine deficiency and with fungal contamination of barley grains by Alternaria sp., Trichotecium sp., Cladosporium sp. and Drechslera sp. Indications existed as well with respect to the role of organic matters in drinking water.
A severe selenium deficiency was documented as well, but selenium status was not associated with the disease, suggesting that selenium deficiency alone could not explain the occurrence of KBD in the villages under study.
An association with the gene Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1 Beta (PPARGC1B) has been reported. This gene is a transcription factor and mutations in this gene would be expected to affect several other genes.
GSE can result in high risk pregnancies and infertility. Some infertile women have GSE and iron deficiency anemia others have zinc deficiency and birth defects may be attributed to folic acid deficiencies.
It has also been found to be a rare cause of amenorrhea.
In lambs, the disease typically occurs between 3 to 8 weeks of age, but may occur in older lambs as well. Progressive paralysis occurs, which is evident through the following symptoms: arched back, difficulty moving and an open shouldered stance. Cardiac failure may occur in two forms: sudden heart failure or gradual cardiac failure characterized by lung anemia that causes death due to suffocation.
Ewes may be given an injection of vitamin E/selenium prior to lambing to prevent deficiencies in lambs. In areas, such as Ontario, where lambs are highly susceptible to the condition, management practices should include vitamin E/selenium injections.
Increased consumption of zinc is another cause of copper deficiency. Zinc is often used for the prevention or treatment of common colds and sinusitis (inflammation of sinuses due to an infection), ulcers, sickle cell disease, celiac disease, memory impairment and acne. Zinc is found in many common vitamin supplements and is also found in denture creams. Recently, several cases of copper deficiency myeloneuropathy were found to be caused by prolonged use of denture creams containing high quantities of zinc.
Metallic zinc is the core of all United States currency coins, including copper coated pennies. People who ingest a large number of coins will have elevated zinc levels, leading to zinc-toxicity-induced copper deficiency and the associated neurological symptoms. This was the case for a 57-year-old woman diagnosed with schizophrenia. The woman consumed over 600 coins, and started to show neurological symptoms such as unsteady gait and mild ataxia.
Raw eggs should be avoided in those with biotin deficiency, because egg whites contain high levels of the anti-nutrient avidin. The name avidin literally means that this protein has an "avidity" (Latin: "to eagerly long for") for biotin. Avidin binds irreversibly to biotin and this compound is then excreted in the urine.