Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Myelofibrosis, also known as osteomyelofibrosis, is a relatively rare bone marrow cancer. It is currently classified as a myeloproliferative neoplasm, in which the proliferation of an abnormal clone of hematopoietic stem cells in the bone marrow and other sites results in fibrosis, or the replacement of the marrow with scar tissue.
The term "myelofibrosis" alone usually refers to primary myelofibrosis (PMF), also known as chronic idiopathic myelofibrosis (cIMF); the terms idiopathic and primary mean that in these cases the disease is of unknown or spontaneous origin. This is in contrast with myelofibrosis that develops secondary to polycythemia vera or essential thrombocythaemia. Myelofibrosis is a form of myeloid metaplasia, which refers to a change in cell type in the blood-forming tissue of the bone marrow, and often the two terms are used synonymously. The terms agnogenic myeloid metaplasia and myelofibrosis with myeloid metaplasia (MMM) are also used to refer to primary myelofibrosis.
The one known curative treatment is allogeneic stem cell transplantation, but this approach involves significant risks.
Other treatment options are largely supportive, and do not alter the course of the disorder (with the possible exception of ruxolitinib, as discussed below). These options may include regular folic acid, allopurinol or blood transfusions. Dexamethasone, alpha-interferon and hydroxyurea (also known as hydroxycarbamide) may play a role.
Lenalidomide and thalidomide may be used in its treatment, though peripheral neuropathy is a common troublesome side-effect.
Frequent blood transfusions may also be required. If the patient is diabetic and is taking a sulfonylurea, this should be stopped periodically to rule out drug-induced thrombocytopenia.
Splenectomy is sometimes considered as a treatment option for patients with myelofibrosis in whom massive splenomegaly is contributing to anaemia because of hypersplenism, particularly if they have a heavy requirement for blood transfusions. However, splenectomy in the presence of massive splenomegaly is a high-risk procedure, with a mortality risk as high as 3% in some studies.
In November 2011, the FDA approved ruxolitinib (Jakafi) as a treatment for intermediate or high-risk myelofibrosis. Ruxolitinib serves as an inhibitor of JAK 1 and 2.
The "New England Journal of Medicine" (NEJM) published results from two Phase III studies of ruxolitinib. These data showed that the treatment significantly reduced spleen volume, improved symptoms of myelofibrosis, and was associated with improved overall survival compared to placebo.
Polycythemia vera occurs in all age groups, although the incidence increases with age. One study found the median age at diagnosis to be 60 years, while a Mayo Clinic study in Olmsted County, Minnesota found that the highest incidence was in people aged 70–79 years. The overall incidence in the Minnesota population was 1.9 per 100,000 person-years, and the disease was more common in men than women. A cluster around a toxic site was confirmed in northeast Pennsylvania in 2008.
Hydroxycarbamide and anagrelide are contraindicated during pregnancy and nursing. Essential thrombocytosis can be linked with a three-fold increase in risk of miscarriage. Throughout pregnancy, close monitoring of the mother and fetus is recommended. Low-dose low molecular weight heparin (e.g. enoxaparin) may be used. For life-threatening complications, the platelet count can be reduced rapidly using platelet apheresis, a procedure that removes platelets from the blood and returns the remainder to the patient.
All MPNs arise from precursors of the myeloid lineages in the bone marrow. The lymphoid lineage may produce similar diseases, the lymphoproliferative disorders (acute lymphoblastic leukemia, lymphomas, chronic lymphocytic leukemia and multiple myeloma).
Most Philadelphia chromosome negative cases have an activating "JAK2" or MPL mutation. Mutations in CALR have been found in the majority of "JAK2" and MPL-negative essential thrombocythemia and myelofibrosis. In 2005, the discovery of the "JAK2V617F" mutation provided the first evidence that a fraction of persons with these disorders have a common molecular pathogenesis. Patients with JAK2V617F-negative polycythemia vera are instead positive for another class of activating JAK2 mutations - the JAK2 exon 12 mutations.
A subset may additionally have mutations in the genes LNK, CBL, TET2, ASXL1, IDH, IKZF1 or EZH2; the pathogenetic contribution of these mutations is being studied.
Although not a malignant neoplasm like other cancers, MPNs are classified within the hematological neoplasms. There are four main myeloproliferative diseases, which can be further categorized by the presence of the Philadelphia chromosome:
In 2008, the World Health Organization listed these diagnoses as types of MPD:
- Chronic myelogenous leukemia (BCR-ABL1–positive)
- Chronic neutrophilic leukemia
- Polycythemia vera
- Primary myelofibrosis
- Essential thrombocythemia
- Chronic eosinophilic leukemia (not otherwise specified)
- Mastocytosis
The incidence of ET is 0.6-2.5/100,000 per year, the median age at onset is 65–70 years and it is more frequent in females than in males. The incidence in children is 0.09/100,000 per year.
Controversy remains today whether this disorder is a subtype of acute myeloid leukemia or myelodysplastic syndromes; however, it is currently classified as a form of AML.
Myelophthisis can occur in the setting of chronic myeloproliferative disease (e.g. myelofibrosis), leukemia, lymphoma, and metastatic carcinoma or myeloma. It is common in people who have chronic idiopathic myelofibrosis. It has been linked to small-cell lung cancer, breast cancer or prostate cancer that metastasizes to the bone marrow.
Historically, the most common cause of displacement of healthy bone marrow was tuberculosis.
Currently, the most common cause is displacement of bone marrow by metastatic cancer (extramedullary hematopoiesis tends to be modest). Other causes include myeloproliferative disorders (especially late-stage or spent polycythemia vera), granulomatous diseases, and (lipid) storage diseases. Myelofibrosis can occur in all of these.
Factors that may contribute to decreased RBC production include a decreased quantity of functioning hematopoietic tissue, disordered metabolism related to the underlying disorder, and, in some cases, erythrophagocytosis.
Untreated, polycythemia vera can be fatal. Research has found that the "1.5-3 years of median survival in the absence of therapy has been extended to at least 10-20 years because of new therapeutic tools."
As the condition cannot be cured, treatment focuses on treating symptoms and reducing thrombotic complications by reducing the erythrocyte levels.
Phlebotomy is one form of treatment, which often may be combined with other therapies. The removal of blood from the body induces iron deficiency, thereby decreasing the haemoglobin / hematocrit level, and reducing the risk of blood clots. Phlebotomy is typically performed to bring their hematocrit (red blood cell percentage) down below 45 for men or 42 for women. It has been observed that phlebotomy also improves cognitive impairment.
Low dose aspirin (75–81 mg daily) is often prescribed. Research has shown that aspirin reduces the risk for various thrombotic complications.
Chemotherapy for polycythemia may be used, either for maintenance, or when the rate of bloodlettings required to maintain normal hematocrit is not acceptable, or when there is significant thrombocytosis or intractable pruritus. This is usually with a "cytoreductive agent" (hydroxyurea, also known as hydroxycarbamide).
The tendency of some practitioners to avoid chemotherapy if possible, especially in young patients, is a result of research indicating possible increased risk of transformation to acute myelogenous leukemia (AML). While hydroxyurea is considered safer in this aspect, there is still some debate about its long-term safety.
In the past, injection of radioactive isotopes (principally phosphorus-32) was used as another means to suppress the bone marrow. Such treatment is now avoided due to a high rate of AML transformation.
Other therapies include interferon injections, and in cases where secondary thrombocytosis (high platelet count) is present, anagrelide may be prescribed.
Bone marrow transplants are rarely undertaken in polycythemia patients; since this condition is non-fatal if treated and monitored, the benefits rarely outweigh the risks involved in such a procedure.
There are indications that with certain genetic markers, erlotinib may be an additional treatment option for this condition.
Selective JAK2 inhibitors are being investigated "in vitro" and in clinical trials.
Iatrogenic causes of pancytopenia include chemotherapy for malignancies if the drug or drugs used cause bone marrow suppression. Rarely, drugs (antibiotics, blood pressure medication, heart medication) can cause pancytopenia.
The antibiotics Linezolid and Chloramphenicol can cause pancytopenia in some individuals.
Rarely, pancytopenia may have other causes, such as mononucleosis, or other viral diseases. Increasingly, HIV is itself a cause for pancytopenia.
- Familial hemophagocytic syndrome
- Aplastic anemia
- Gaucher's disease
- metastatic carcinoma of bone
- Multiple Myeloma
- overwhelming infections
- Lymphoma
- myelofibrosis
- Dyskeratosis congenita
- Myelodysplastic syndrome
- Leukemia
- Leishmaniasis
- Severe Folate or vitamin B12 deficiency
- Systemic lupus erythematosus
- Paroxysmal nocturnal hemoglobinuria (blood test)
- Viral infections (such as HIV, EBV--undetermined virus is most common).
- Alimentary toxic aleukia
- Copper deficiency
- Pernicious anemia
- Medication
- Hypersplenism
- Osteopetrosis
- Organic acidurias (Propionic Acidemia, Methylmalonic Aciduria, Isovaleric Aciduria)
- Low dose arsenic poisoning
- Sako disease (Myelodysplastic-cytosis)
- Chronic radiation sickness
- LIG4 syndrome
Chloromas may occur in patients with a diagnosis of myelodysplastic syndrome (MDS) or myeloproliferative syndromes (MPS) (e.g. chronic myelogenous leukemia (CML), polycythemia vera, essential thrombocytosis, or myelofibrosis). The detection of a chloroma is considered "de facto" evidence these premalignant conditions have transformed into an acute leukemia requiring appropriate treatment. For example, presence of a chloroma is sufficient to indicate chronic myelogenous leukemia has entered its 'blast crisis' phase.
Some cases of myelophthisis are thought to be related to the release of cytokines that simulate fibroblastic proliferation and fibrosis in the marrow.
Complete remission and long-term survival are more common in children than adults.
Prognosis depends upon the cause. One third of cases is associated with a t(1;22)(p13;q13) mutation in children. These cases carry a poor prognosis.
Another third of cases is found in Down syndrome. These cases have a reasonably fair prognosis.
The last third of cases may be heterogeneous, and carry a poor prognosis.
Median survival is about 9 months.
Autologous stem cell transplantation has been used in treatment.
Untreated, severe aplastic anemia has a high risk of death. Modern treatment, by drugs or stem cell transplant, has a five-year survival rate that exceeds 85%, with younger age associated with higher survival.
Survival rates for stem cell transplant vary depending on age and availability of a well-matched donor. Five-year survival rates for patients who receive transplants have been shown to be 82% for patients under age 20, 72% for those 20–40 years old, and closer to 50% for patients over age 40. Success rates are better for patients who have donors that are matched siblings and worse for patients who receive their marrow from unrelated donors.
Older people (who are generally too frail to undergo bone marrow transplants), and people who are unable to find a good bone marrow match, undergoing immune suppression have five-year survival rates of up to 75%.
Relapses are common. Relapse following ATG/ciclosporin use can sometimes be treated with a repeated course of therapy. In addition, 10-15% of severe aplastic anemia cases evolve into MDS and leukemia. According to a study, for children who underwent immunosuppressive therapy, about 15.9% of children who responded to immunosuppressive therapy encountered relapse.
Milder disease can resolve on its own.
At least one case of "FIP1L1-PDGFRA" fusion gene-induced eosinophilic leukemia presenting with myeloid sarcoma and eosinophilia has been reported. This form of myeloid sarcoma is distinguished by its highly successful treatment with imatinib (the recommended treatment for "FIP1L1-PDGRGA" fusion gene-induced eosinophilic leukemia) rather than more aggressive and toxic therapy.
As with many cancers, the cause of hairy cell leukemia is unknown. Exposure to tobacco smoke, ionizing radiation, or industrial chemicals (with the possible exception of diesel) does not appear to increase the risk of developing HCL. Farming and gardening appear to increase the risk of HCL in some studies.
Recent studies have identified somatic BRAF V600E mutations in all patients with the classic form of hairy cell leukemia thus sequenced, but in no patients with the variant form.
The U.S. Institute of Medicine (IOM) announced "sufficient evidence" of an association between exposure to herbicides and later development of chronic B-cell leukemias and lymphomas in general. The IOM report emphasized that neither animal nor human studies indicate an association of herbicides with HCL specifically. However, the IOM extrapolated data from chronic lymphocytic leukemia and non-Hodgkin lymphoma to conclude that HCL and other rare B-cell neoplasms may share this risk factor. As a result of the IOM report, the U.S. Department of Veterans Affairs considers HCL an illness presumed to be a service-related disability (see Agent Orange).
Human T-lymphotropic virus 2 (HTLV-2) has been isolated in a small number of patients with the variant form of HCL. In the 1980s, HTLV-2 was identified in a patient with a T-cell lymphoproliferative disease; this patient later developed hairy cell leukemia (a B cell disease), but HTLV-2 was not found in the hairy cell clones. There is no evidence that HTLV-II causes any sort of hematological malignancy, including HCL.
Inherited mutations in three genes which all result in increased stability of hypoxia-inducible factors, leading to increased erythropoietin production, have been shown to cause erythrocytosis:
- Chuvash polycythemia is an autosomal recessive form of erythrocytosis which is endemic in patients from Chuvashia, an autonomous republic within the Russian Federation. Chuvash polycythemia is associated with homozygosity for a C598T mutation in the von Hippel-Lindau gene ("VHL"), which is needed for the destruction of hypoxia-inducible factors in the presence of oxygen. Clusters of patients with Chuvash polycythemia have been found in other populations, such as on the Italian island of Ischia, located in the Bay of Naples.
- PHD2 erythrocytosis: Heterozygosity for loss-of-function mutations of the "PHD2" gene are associated with autosomal dominant erythrocytosis and increased hypoxia-inducible factors activity.
- HIF2α erythrocytosis: Gain-of-function mutations in" HIF2α "are associated with autosomal dominant erythrocytosis and pulmonary hypertension.
Secondary polycythemia is caused by either natural or artificial increases in the production of erythropoietin, hence an increased production of erythrocytes. In secondary polycythemia, 6 to 8 million and occasionally 9 million erythrocytes may occur per millimeter of blood. Secondary polycythemia resolves when the underlying cause is treated.
Secondary polycythemia in which the production of erythropoietin increases appropriately is called physiologic polycythemia.
Conditions which may result in a physiologically appropriate polycythemia include:
- Altitude related - This physiologic polycythemia is a normal adaptation to living at high altitudes (see altitude sickness). Many athletes train at high altitude to take advantage of this effect — a legal form of blood doping. Some individuals believe athletes with primary polycythemia may have a competitive advantage due to greater stamina. However, this has yet to be proven due to the multifaceted complications associated with this condition.
- Hypoxic disease-associated - for example in cyanotic heart disease where blood oxygen levels are reduced significantly, may also occur as a result of hypoxic lung disease such as COPD and as a result of chronic obstructive sleep apnea.
- Iatrogenic - Secondary polycythemia can be induced directly by phlebotomy (blood letting) to withdraw some blood, concentrate the erythrocytes, and return them to the body.
- Genetic - Heritable causes of secondary polycythemia also exist and are associated with abnormalities in hemoglobin oxygen release. This includes patients who have a special form of hemoglobin known as Hb Chesapeake, which has a greater inherent affinity for oxygen than normal adult hemoglobin. This reduces oxygen delivery to the kidneys, causing increased erythropoietin production and a resultant polycythemia. Hemoglobin Kempsey also produces a similar clinical picture. These conditions are relatively uncommon.
Conditions where the secondary polycythemia is not as a result of physiologic adaptation and occurs irrespective of body needs include:
- Neoplasms - Renal-cell carcinoma or liver tumors, von Hippel-Lindau disease, and endocrine abnormalities including pheochromocytoma and adrenal adenoma with Cushing's syndrome.
- People whose testosterone levels are high because of the use of anabolic steroids, including athletes who abuse steroids, or people on testosterone replacement for hypogonadism or transgender hormone replacement therapy, as well as people who take erythropoietin, may develop secondary polycythemia.
It is associated with GATA1, and risks are increased in individuals with Down syndrome.
However, not all cases are associated with Down syndrome, and other genes can also be associated with AMKL.
Another related gene is MKL1, which is also known as "MAL". This gene is a cofactor of serum response factor.
Regular full blood counts are required on a regular basis to determine whether the patient is still in a state of remission.
Many patients with aplastic anemia also have clones of cells characteristic of the rare disease paroxysmal nocturnal hemoglobinuria (PNH, anemia with thrombopenia and/or thrombosis), sometimes referred to as AA/PNH. Occasionally PNH dominates over time, with the major manifestation intravascular hemolysis. The overlap of AA and PNH has been speculated to be an escape mechanism by the bone marrow against destruction by the immune system. Flow cytometry testing is performed regularly in people with previous aplastic anemia to monitor for the development of PNH.
This disease is rare, with fewer than 1 in 10,000 people being diagnosed with HCL during their lives. Men are four to five times more likely to develop hairy cell leukemia than women. In the United States, the annual incidence is approximately 3 cases per 1,000,000 men each year, and 0.6 cases per 1,000,000 women each year.
Most patients are white males over the age of 50, although it has been diagnosed in at least one teenager. It is less common in people of African and Asian descent compared to people of European descent.
It does not appear to be hereditary, although occasional familial cases that suggest a predisposition have been reported, usually showing a common Human Leukocyte Antigen (HLA) type.
The disease is marked by an inappropriate and ineffective T cell activation that leads to an increased hemophagocytic activity. The T cell activated macrophages engulf erythrocytes, leukocytes, platelets, as well as their progenitor cells. Such finding is common in the syndrome, which is also referred to as hemophagocytic lymphohistiocytosis (HLH). Along with pancytopenia, HLH is characterized by fever, splenomegaly, and hemophagocytosis in bone marrow, liver, or lymph nodes.
The most common causes of splenomegaly in developed countries are infectious mononucleosis, splenic infiltration with cancer cells from a hematological malignancy and portal hypertension (most commonly secondary to liver disease, and sarcoidosis). Splenomegaly may also come from bacterial infections, such as syphilis or an infection of the heart's inner lining (endocarditis).
The possible causes of moderate splenomegaly (spleen <1000 g) are many, and include:
The causes of massive splenomegaly (spleen >1000 g) are fewer, and include:
- visceral leishmaniasis (kala-azar)
- chronic myelogenous leukemia
- myelofibrosis
- malaria
- splenic marginal zone lymphoma