Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
According to a recent study, the main risk factors for RA-ILD are advancing age, male sex, greater RA disease activity, rheumatoid factor (RF) positivity, and elevated titers of anticitrullinated protein antibodies such as anticyclic citrullinated peptide. Cigarette smoking also appears to increase risk of RA-ILD, especially in patients with human leukocyte antigen DRB1.
A recently published retrospective study by a team from Beijing Chao-Yang Hospital in Beijing, China, supported three of the risk factors listed for RA-ILD and identified an additional risk factor. In that study of 550 RA patients, logistic regression analysis of data collected on the 237 (43%) with ILD revealed that age, smoking, RF positivity, and elevated lactate dehydrogenase closely correlated with ILD.
Recent studies have identified risk factors for disease progression and mortality. A retrospective study of 167 patients with RA-ILD determined that the usual interstitial pneumonia (UIP) pattern on high-resolution computed tomography (HRCT) was a risk factor for progression, as were severe disease upon diagnosis and rate of change in pulmonary function test results in the first 6 months after diagnosis.
A study of 59 RA-ILD patients found no median survival difference between those with the UIP pattern and those without it. But the UIP group had more deaths, hospital admissions, need for supplemental oxygen, and decline in lung function.
The cause of IPF is unknown but certain environmental factors and exposures have been shown to increase the risk of getting IPF. Cigarette smoking is the best recognized and most accepted risk factor for IPF, and increases the risk of IPF by about twofold. Other environmental and occupation exposures such as exposure to metal dust, wood dust, coal dust, silica, stone dust, biologic dusts coming from hay dust or mold spores or other agricultural products, and occupations related to farming/livestock have also been shown to increase the risk for IPF. There is some evidence that viral infections may be associated with idiopathic pulmonary fibrosis and other fibrotic lung diseases.
The clinical course of IPF can be unpredictable. IPF progression is associated with an estimated median survival time of 2 to 5 years following diagnosis.
The 5-year survival for IPF ranges between 20–40%, a mortality rate higher than that of a number of malignancies, including colon cancer, multiple myeloma and bladder cancer.
Recently a multidimensional index and staging system has been proposed to predict mortality in IPF. The name of the index is GAP and is based on gender [G], age [A], and two lung physiology variables [P] (FVC and DL that are commonly measured in clinical practice to predict mortality in IPF. The highest stage of GAP (stage III) has been found to be associated with a 39% risk of mortality at 1 year. This model has also been evaluated in IPF and other ILDs and shown good performance in predicting mortality in all main ILD subtypes. A modified ILD-GAP Index has been developed for application across ILD subtypes to provide disease-specific survival estimates. In IPF patients, the overall mortality at 5 years rate is high but the annual rate of all-cause mortality in patients with mild to moderate lung impairment is relatively low. This is the reason why change in lung function (FVC) is usually measured in 1-year clinical trials of IPF treatments rather than survival.
In addition to clinical and physiological parameters to predict how rapidly patients with IPF might progress, genetic and molecular features are also associated with IPF mortality. For example, it has been shown that IPF patients who have a specific genotype in the mucin MUC5B gene polymorphism (see above) experience slower decline in FVC and significantly improved survival. Even if such data are interesting from a scientific point of view, the application in the clinical routine of a prognostic model based on specific genotypes is still not possible.
Pulmonary fibrosis may be a secondary effect of other diseases. Most of these are classified as interstitial lung diseases. Examples include autoimmune disorders, viral infections and bacterial infection like tuberculosis which may cause fibrotic changes in both lungs upper or lower lobes and other microscopic injuries to the lung. However, pulmonary fibrosis can also appear without any known cause. In this case, it is termed "idiopathic". Most idiopathic cases are diagnosed as "idiopathic pulmonary fibrosis". This is a diagnosis of exclusion of a characteristic set of histologic/pathologic features known as usual interstitial pneumonia (UIP). In either case, there is a growing body of evidence which points to a genetic predisposition in a subset of patients. For example, a mutation in surfactant protein C (SP-C) has been found to exist in some families with a history of pulmonary fibrosis.
Diseases and conditions that may cause pulmonary fibrosis as a secondary effect include:
- Inhalation of environmental and occupational pollutants, such as metals in asbestosis, silicosis and exposure to certain gases. Coal miners, ship workers and sand blasters among others are at higher risk.
- Hypersensitivity pneumonitis, most often resulting from inhaling dust contaminated with bacterial, fungal, or animal products.
- Cigarette smoking can increase the risk or make the illness worse.
- Some typical connective tissue diseases such as rheumatoid arthritis, SLE and scleroderma
- Other diseases that involve connective tissue, such as sarcoidosis and granulomatosis with polyangiitis.
- Infections
- Certain medications, e.g. amiodarone, bleomycin (pingyangmycin), busulfan, methotrexate, apomorphine, and nitrofurantoin
- Radiation therapy to the chest
ILD may be classified according to the cause. One method of classification is as follows:
1. Inhaled substances
- Inorganic
- Silicosis
- Asbestosis
- Berylliosis
- printing workers (eg. carbon bblack, ink mist)
- Organic
- Hypersensitivity pneumonitis
2. Drug-induced
- Antibiotics
- Chemotherapeutic drugs
- Antiarrhythmic agents
3. Connective tissue and Autoimmune diseases
- Rheumatoid arthritis
- Systemic lupus erythematosus
- Systemic sclerosis
- Polymyositis
- Dermatomyositis
4. Infection
- Atypical pneumonia
- Pneumocystis pneumonia (PCP)
- Tuberculosis
- "Chlamydia" trachomatis
- Respiratory Syncytial Virus
5. Idiopathic
- Sarcoidosis
- Idiopathic pulmonary fibrosis
- Hamman-Rich syndrome
- Antisynthetase syndrome
6. Malignancy
- Lymphangitic carcinomatosis
7. Predominantly in children
- Diffuse developmental disorders
- Growth abnormalities deficient alveolarisation
- Infant conditions of undefined cause
- ILD related to alveolar surfactant region
The exact cause of rheumatoid lung disease is unknown. However, associated factors could be due largely to smoking. Sometimes, the medicines used to treat rheumatoid arthritis, especially methotrexate, may result in lung disease.
Prevention's:
- Stop smoking: Chemicals found in cigarettes can irritate already delicate lung tissue, leading to further complications.
- Having regular checkups: The doctor could listen to lungs and monitor breathing, because lung problems that are detected early can be easier to treat.
Five million people worldwide are affected by pulmonary fibrosis. A wide range of incidence and prevalence rates have been reported for pulmonary fibrosis. The rates below are per 100,000 persons, and the ranges reflect narrow and broad inclusion criteria, respectively.
Based on these rates, pulmonary fibrosis prevalence in the United States could range from more than 29,000 to almost 132,000, based on the population in 2000 that was 18 years or older. The actual numbers may be significantly higher due to misdiagnosis. Typically, patients are in their forties and fifties when diagnosed while the incidence of idiopathic pulmonary fibrosis increases dramatically after the age of fifty. However, loss of pulmonary function is commonly ascribed to old age, heart disease or to more common lung diseases.
Interstitial lung disease (ILD), or diffuse parenchymal lung disease (DPLD), is a group of lung diseases affecting the interstitium (the tissue and space around the air sacs of the lungs). It concerns alveolar epithelium, pulmonary capillary endothelium, basement membrane, perivascular and perilymphatic tissues. It may occur when an injury to the lungs triggers an abnormal healing response. Ordinarily, the body generates just the right amount of tissue to repair damage. But in interstitial lung disease, the repair process goes awry and the tissue around the air sacs (alveoli) becomes scarred and thickened. This makes it more difficult for oxygen to pass into the bloodstream. The term ILD is used to distinguish these diseases from obstructive airways diseases.
In children, several unique forms of ILD exist which are specific for the young age groups. The acronym chILD is used for this group of diseases and is derived from the English name, Children’s Interstitial Lung Diseases – chILD.
Prolonged ILD may result in pulmonary fibrosis, but this is not always the case. Idiopathic pulmonary fibrosis is interstitial lung disease for which no obvious cause can be identified (idiopathic), and is associated with typical findings both radiographic (basal and pleural based fibrosis with honeycombing) and pathologic (temporally and spatially heterogeneous fibrosis, histopathologic honeycombing and fibroblastic foci).
In 2013 interstitial lung disease affected 595,000 people globally. This resulted in 471,000 deaths.
Pulmonary venoocclusive disease is rare, difficult to diagnose, and probably frequently misdiagnosed as idiopathic pulmonary arterial hypertension. Prevalence in parts of Europe is estimated to be 0.1-0.2 cases per million.
PVOD appears to occur as frequently in men as in women, and age at diagnosis ranges from 7–74 years with a median of 39 years. PVOD may occur in patients with associated diseases such as HIV, bone marrow transplantation, and connective tissue diseases. PVOD has also been associated with several chemotherapy regimens such as bleomycin, BCNU, and mitomycin.
Non-specific interstitial pneumonia (NSIP) is a form of idiopathic interstitial pneumonia.
It has been suggested that idiopathic nonspecific interstitial pneumonia has an autoimmune mechanism, and is a possible complication of undifferentiated connective tissue disease.
The genetic cause of pulmonary veno-occlusive disease is mutations in EIF2AK4 gene. Though this does not mean other possible causes do not exist, such as viral infection and risk of toxic chemicals (chemotherapy drugs).
Periodontitis as a manifestation of systemic diseases is one of the seven categories of periodontitis as defined by the American Academy of Periodontology 1999 classification system. At least 16 systemic diseases have been linked to periodontitis. These systemic diseases are associated with periodontal disease because they generally contribute to either a decreased host resistance to infections or dysfunction in the connective tissue of the gums, increasing patient susceptibility to inflammation-induced destruction.
These secondary periodontal inflammations should not be confused by other conditions in which an epidemiological association with periodontitis was revealed, but no causative connection was proved yet. Such conditions are coronary heart diseases, cerebrovascular diseases and erectile dysfunction.
For those patients with periodontitis as a manifestation of hematologic disorders, coordination with the patient's physician is instrumental in planning periodontal treatment. Therapy should be avoided during periods of exacerbation of the malignancy or during active phases of chemotherapy, and antimicrobial therapy might be considered when urgent treatment must be performed when granulocyte counts are low.
Although there is no definitive reporting on its incidence, acrocyanosis shows prevalence in children and young adults than in patients thirty years of age or older. Epidemiological data suggests that cold climate, outdoor occupation, and low body mass index are significant risk factors for developing acrocyanosis. As expected, acrocyanosis would be more prevalent in women than in men due to differences in BMI. However, the incidence rate of acrocyanosis often decreases with increasing age, regardless of regional climate. It completely resolves in many women after menopause implying significant hormonal influences.
The prognosis of mixed connective tissue disease is in one third of cases worse than that of systemic lupus erythematosus (SLE). In spite of prednisone treatment, this disease is progressive and may in many cases evolve into a progressive systemic sclerosis (PSS), also referred to as diffuse cutaneous systemic scleroderma (dcSSc) which has a poor outcome. In some cases though the disease is mild and may only need aspirin as a treatment and may go into remission where no Anti-U1-RNP antibodies are detected, but that is rare or within 30% of cases. Most deaths from MCTD are due to heart failure caused by pulmonary arterial hypertension (PAH).
Acrocyanosis is common initially after delivery in the preterm and full term newborn Intervention normally is not required, although hospitals opt to provide supplemental oxygen for precautionary measures.
These are also referred to as systemic autoimmune diseases. The autoimmune CTDs may have both genetic and environmental causes. Genetic factors may create a predisposition towards developing these autoimmune diseases. They are characterized as a group by the presence of spontaneous overactivity of the immune system that results in the production of extra antibodies into the circulation. The classic collagen vascular diseases have a "classic" presentation with typical findings that doctors can recognize during an examination. Each also has "classic" blood test abnormalities and abnormal antibody patterns. However, each of these diseases can evolve slowly or rapidly from very subtle abnormalities before demonstrating the classic features that help in the diagnosis. The classic collagen vascular diseases include:
- Systemic lupus erythematosus (SLE) – An inflammation of the connective tissues, SLE can afflict every organ system. It is up to nine times more common in women than men and strikes black women three times as often as white women. The condition is aggravated by sunlight.
- Rheumatoid arthritis – Rheumatoid arthritis is a systemic disorder in which immune cells attack and inflame the membrane around joints. It also can affect the heart, lungs, and eyes. Of the estimated 2.1 million Americans with rheumatoid arthritis, approximately 1.5 million (71 percent) are women.
- Scleroderma – an activation of immune cells that produces scar tissue in the skin, internal organs, and small blood vessels. It affects women three times more often than men overall, but increases to a rate 15 times greater for women during childbearing years, and appears to be more common among black women.
- Sjögren's syndrome – also called Sjögren's disease, is a chronic, slowly progressing inability to secrete saliva and tears. It can occur alone or with rheumatoid arthritis, scleroderma, or systemic lupus erythematosus. Nine out of 10 cases occur in women, most often at or around mid-life.
- Mixed connective tissue disease – Mixed connective-tissue disease (MCTD) is a disorder in which features of various connective-tissue diseases (CTDs) such as systemic lupus erythematosus (SLE); systemic sclerosis (SSc); dermatomyositis (DM); polymyositis (PM); anti-synthetase syndrome; and, occasionally, Sjögren syndrome can coexist and overlap. The course of the disease is chronic and usually milder than other CTDs. In most cases, MCTD is considered an intermediate stage of a disease that eventually becomes either SLE or Scleroderma.
- Undifferentiated connective tissue disease (UCTD) is a disease in which the body mistakenly attacks its own tissues. It is diagnosed when there is evidence of an existing autoimmune condition which does not meet the criteria for any specific autoimmune disease, such as systemic lupus erythematosus or scleroderma. Latent lupus and incomplete lupus are alternative terms that have been used to describe this condition.
- Psoriatic arthritis is also a collagen vascular disease.
Mixed connective tissue disease (also known as Sharp's syndrome), commonly abbreviated as MCTD, is an autoimmune disease characterized by the presence of high blood levels of a specific autoantibody, now called anti-U1 ribonucleoprotein (RNP). The idea behind the "mixed" disease is that this specific autoantibody is also present in other autoimmune diseases such as systemic lupus erythematosus, polymyositis, scleroderma, etc. It was characterized in 1972, and the term was introduced by Leroy in 1980.
It is sometimes said to be the same as undifferentiated connective tissue disease, but other experts specifically reject this idea because undifferentiated connective tissue disease is not necessarily associated with serum antibodies directed against the U1-RNP, and MCTD is associated with a more clearly defined set of signs/symptoms.
A connective tissue disease is any disease that has the connective tissues of the body as a target of pathology. Connective tissue is any type of biological tissue with an extensive extracellular matrix that supports, binds together, and protects organs. These tissues form a framework, or matrix, for the body, and are composed of two major structural protein molecules: collagen and elastin. There are many different types of collagen protein in each of the body's tissues. Elastin has the capability of stretching and returning to its original length—like a spring or rubber band. Elastin is the major component of ligaments (tissues that attach bone to bone) and skin. In patients with connective tissue disease, it is common for collagen and elastin to become injured by inflammation (ICT). Many connective tissue diseases feature abnormal immune system activity with inflammation in tissues as a result of an immune system that is directed against one's own body tissues (autoimmunity).
Diseases in which inflammation or weakness of collagen tends to occur are also referred to as collagen diseases. Collagen vascular diseases can be (but are not necessarily) associated with collagen and blood vessel abnormalities and that are autoimmune in nature. See also vasculitis.
Connective tissue diseases can have strong or weak inheritance risks, and can also be caused by environmental factors.
Adenocarcinoma of the bowel has been associated with coeliac disease.
Squamous carcinoma of the esophagus is more prevalent in coeliac disease. The increased prevalence may be secondary to GERD that results from chronic delayed gastric emptying. Other studies implicate the malabsorption of vitamin A and zinc as a result of multi-vitamin and mineral deficiencies seen in Coeliac disease.
While the prognosis of cryofibrinoginemic disease varies greatly depending on its severity as well as the severity of its associated disorders, satisfactory clinical outcomes are reported in 50-80% of patients with primary or secondary disease treated with corticosteroid and/or immunosuppressive regimens. However, relapses occur within the first 6 months after stopping or decreasing therapy in 40-76% of cases. Sepsis resulting from infection of necrotic tissue is the most common threat to life in primary disease whereas the associated disorder is a critical determinant of prognosis in secondary disease.
Most patients will maintain a diagnosis of undifferentiated connective tissue disease. However, about one third of UCTD patients will differentiate to a specific autoimmune disease, like rheumatoid arthritis or systemic sclerosis. About 12 percent of patients will go into remission.
Severe vitamin D deficiency has been associated with the progression of UCTD into defined connective tissue diseases. The presence of the autoantibodies anti-dsDNA, anti-Sm, and anti-cardiolipin has been shown to correlate with the development of systemic lupus erythematosus, specifically.
Vasculitis secondary to connective tissue disorders. Usually secondary to systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), relapsing polychondritis, Behçet's disease, and other connective tissue disorders.
Vasculitis secondary to viral infection. Usually due to hepatitis B and C, HIV, cytomegalovirus, Epstein-Barr virus, and Parvo B19 virus.