Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Triphalangeal thumb can occur in syndromes but it can also be isolated. The triphalangeal thumb can appear in combination with other malformations or syndromes.
Syndromes include:
- Holt-Oram syndrome
- Aase syndrome
- Blackfan-Diamond syndrome
- Townes-Brocks syndrome
Malformations include:
- Radial polydactyly
- Syndactyly
- Claw-like hand or foot
Malformations of the upper extremities can occur In the third to seventh embryonic week. In some cases the TPT is hereditary. In these cases, there is a mutation on chromosome 7q36. If the TPT is hereditary, it is mostly inherited as an autosomal dominant trait, non-opposable and bilateral. The sporadic cases are mostly opposable and unilateral.
The exact cause of the condition is unknown. In some cases, close family members may share this condition. In other cases, no other related persons have this condition. The scientific name for the condition is syndactyly, although this term covers both webbed fingers and webbed toes. Syndactyly occurs when apoptosis or programmed cell death during gestation is absent or incomplete. Webbed toes occur most commonly in the following circumstances:
- Syndactyly or Familial Syndactyly
- Down syndrome
It is also associated with a number of rare conditions, notably:
- Aarskog–Scott syndrome
- Acrocallosal syndrome
- Apert's syndrome
- Bardet-Biedl syndrome
- Carpenter syndrome
- Cornelia de Lange syndrome
- Edwards syndrome
- Jackson–Weiss syndrome
- Fetal hydantoin syndrome
- Miller syndrome
- Pfeiffer syndrome
- Smith-Lemli-Opitz syndrome
- Timothy syndrome
- Ectodermal Dysplasia
- Klippel-Feil Syndrome
Three main support groups of this syndrome are the ASGA in Australia, The Association for Children with Genetic Disorders in Poland, and the Association of People of Genetic Disorders in Greece.
Hand-foot-genital syndrome is inherited in an autosomal dominant manner. The proportion of cases caused by de novo mutations is unknown because of the small number of individuals described. If a parent of the proband is affected, the risk to the siblings is 50%. When the parents are clinically unaffected, the risk to the sibs of a proband appears to be low. Each child of an individual with HFGS has a 50% chance of inheriting the mutation. Prenatal testing may be available through laboratories offering custom prenatal testing for families in which the disease-causing mutation has been identified in an affected family member.
Omphalocele has been described in two patients with Apert syndrome by Herman T.E. et al. (USA, 2010) and by Ercoli G. et al. (Argentina, 2014). An omphalocele is a birth defect in which an intestine or other abdominal organs are outside of the body of an infant because of a hole in the bellybutton area. However, the association between omphalocele and Apert syndrome is not confirmed yet, so additional studies are necessary.
Webbed toes in humans are a purely cosmetic condition. This condition does not impair the ability to perform any activity, including walking, running, or swimming. Depending on the severity and structure of the webbing, there can be some minor consequences.
People with more severe webbed toes may have a slight disadvantage for activities that benefit from prehensile toes, due to the toes being unable to split or move laterally. Although not scientifically proven, some believe that this condition can possibly allow for a slight advantage, specifically, in athletics. Considering your big toe is a main source for balance, having your second and third toe webbed could virtually be seen as having two big toes. Thus, allowing for better balance in athletics such as running or dance.
Psychological stress may arise from the fear of negative reactions to this condition from people who do not have webbed toes, particularly in severe cases where the nails are stuck visibly close together. Many people with webbed toes can physically feel the toes touching under the fused skin, which can cause psychological discomfort. This is due to the nerves of each toe fully developing and independent muscles working. In other cases where the toes are partially webbed, the webbing holds the separate tips of the toes against one another and prevents the muscles from spreading the toes apart, causing the toes and sometimes nails to press together.
However a disadvantage would be a difficulty in wearing flip-flops or other such footwear in warm countries. People with webbed toes may be unable to wear Toe socks or Vibram FiveFingers shoes. Difficulty navigating rough terrain barefoot, such as rocks at a beach is also common. In some cases the toes grow at different lengths causing the toes to buckle or bend and many people with severe webbed toes experience cramping in these toes due to the muscles and ligaments being strained.
Acrocephalosyndactyly may be an autosomal dominant disorder. Males and females are affected equally; however research is yet to determine an exact cause. Nonetheless, almost all cases are sporadic, signifying fresh mutations or environmental insult to the genome. The offspring of a parent with Apert syndrome has a 50% chance of inheriting the condition. In 1995, A.O.M. Wilkie published a paper showing evidence that acrocephalosyndactyly is caused by a defect on the fibroblast growth factor receptor 2 gene, on chromosome 10.
Apert syndrome is an autosomal dominant disorder; approximately two-thirds of the cases are due to a C to G mutation at the position 755 in the FGFR2 gene, which causes a Ser to Trp change in the protein. This is a male-specific mutation hotspot: in a study of 57 cases, the mutation always occurred on the paternally derived allele. On the basis of the observed birth prevalence of the disease (1 in 70,000), the apparent rate of C to G mutations at this site is about .00005, which is 200- to 800-fold higher than the usual rate for mutations at CG dinucleotides. Moreover, the incidence rises sharply with the age of the father. Goriely et al. (2003) analyzed the allelic distribution of mutations in sperm samples from men of different ages and concluded that the simplest explanation for the data is that the C to G mutation gives the cell an advantage in the male germline.
It is still not very clear why people with Apert Syndrome have both craniosynostosis and syndactyly. There has been one study that suggests it has something to do with the expression of three isoforms of FGFR2, the gene with the point mutations that causes the syndrome in 98% of the patients.
KGFR, keratinocyte growth factor receptor, is an isoform active in the metaphysis and interphalangeal joints. FGFR1 is an isoform active in the diaphysis. FGFR2-Bek is active in the metaphysis, as well as the diaphysis, but also in the interdigital mesenchyme. The point mutation increases the ligand-dependent activation of FGFR2, and thus of its isoforms. This means that FGFR2 loses its specificity, causing binding of FGFs that normally do not bind to the receptor. Since FGF suppresses apoptosis, the interdigital mesenchyme is maintained. FGF also increases replication and differentiation of osteoblasts, thus early fusion of several sutures of the skull. This may explain why both symptoms are always found in Apert Syndrome.
The syndromes associated with central polydactyly are:
Bardet–Biedl syndrome,
Meckel syndrome,
Pallister–Hall syndrome,
Legius syndrome,
Holt–Oram syndrome,
Also, central polydactyly can be associated with syndactyly and cleft hand.
Other syndromes including polydactyly include acrocallosal syndrome, basal cell nevus syndrome, Biemond syndrome, ectrodactyly-ectodermal dysplasias-cleft lip/palate syndrome, mirror hand deformity, Mohr syndrome, oral-facial-digital syndrome, Rubinstein-Taybi syndrome, short rib polydactyly, and VATER association.
It can also occur with a triphalangeal thumb.
Brachymetatarsia is found to occur more frequently in women than men.
Type VII of radial polydactyly is associated with several syndromes:
Holt–Oram syndrome, Fanconi anemia (aplastic anemia by the age of 6), Townes–Brocks syndrome, and Greig cephalopolysyndactyly (also known to occur with ulnar polydactyly).
Some individuals have preaxial polydactyly in the feet (unilateral in one, bilateral in 13), consisting of a small extra biphalangeal toe, in most cases with an associated rudimentary extra metatarsal, lying in a soft tissue web between the hallux and second toe. In some cases, this was accompanied by hypoplasia of the head of the first metatarsal and absence of both phalanges of the hallux.
Diagnosis is based on physical examination including radiographs of the hands and feet and imaging studies of the kidneys, bladder, and female reproductive tract. HOXA13 is the only gene known to be associated with HFGS. Approximately 60% of mutations are polyalanine expansions. Molecular genetic testing is clinically available.
These lesions usually present in neonates, although they may not come to clinical attention until adulthood (for cosmetic reasons). There is no gender predilection. They are present in approximately 3-6 per 1000 live births.
Currently there are only around 26 people in the world that are known to have this rare condition. Inheritance is thought to be X-linked recessive.
Cooks syndrome is a hereditary disorder which is characterized in the hands by bilateral nail hypoplasia on the thumb, index finger, and middle finger, absence of fingernails (anonychia) on the ring finger and little finger, lengthening of the thumbs, and bulbousness of the fingers. In the feet, it is characterized by absence of toenails and absence/hypoplasia of the distal phalanges. In the second study of this disorder, it was found that the intermediate phalanges, proximal phalanges, and metacarpals were unaffected.
The disorder was first described by Cooks "et al." in 1985 after being discovered in two generations of one family. It was proposed that the inheritance of the disorder is autosomal dominant. A second family, this with three affected generations, confirmed that the inheritance of the disorder is autosomal dominant. Although several genetic disorders exist which can cause anonychia and onychodystrophy, such disorders often cause other anomalies such as deafness, mental retardation, and defects of the hair, eyes, and teeth. Cooks syndrome is not known to cause any such anomalies.
In 1999, a pair of siblings was found with brachydactyly type B. Because the disorder primarily affected the nails and distal phalanges, the research group concluded that brachydactyly type B and Cooks syndrome are the same disorder. However, in 2007, a 2-year-old girl was found with symptoms consistent with both brachydactyly type B and Cooks syndrome. It was found that the two syndromes were distinct clinically, radiologically, and genetically.
Cenani–Lenz syndactylism, also known as Cenani–Lenz syndrome or Cenani–syndactylism, is an autosomal recessive congenital malformation syndrome involving both upper and lower extremities.
Kleefstra syndrome affects males and females equally and approximately, 75% of all documented cases are caused by Eu-HMTase1 disruptions while only 25% are caused by 9q34.3 deletions. There are no statistics on the effect the disease has on life expectancy due to the lack of information available.
Thumb hypoplasia is a spectrum of congenital abnormalities of the thumb varying from small defects to absolute retardation of the thumb. It can be isolated, when only the thumb is affected, and in 60% of the cases it is associated with radial dysplasia (or radial club, radius dysplasia, longitudinal radial deficiency). Radial dysplasia is the condition in which the forearm bone and the soft tissues on the thumb side are underdeveloped or absent.
In an embryo the upper extremities develop from week four of the gestation. During the fifth to eighth week the thumb will further develop. In this period something goes wrong with the growth of the thumb but the exact cause of thumb hypoplasia is unknown.
One out of every 100,000 live births shows thumb hypoplasia. In more than 50% of the cases both hands are affected, otherwise mainly the right hand is affected.
About 86% of the children with hypoplastic thumb have associated abnormalities. Embryological hand development occurs simultaneously with growth and development of the cardiovascular, neurologic and hematopoietic systems. Thumb hypoplasia has been described in 30 syndromes wherein those abnormalities have been seen. A syndrome is a combination of three or more abnormalities. Examples of syndromes with an hypoplastic thumb are Holt-Oram syndrome, VACTERL association and thrombocytopenia absent radius (TAR syndrome).
Cenani–Lenz syndactylism is inherited in an autosomal recessive manner. This means the defective gene responsible for the disorder is located on an autosome, and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
In a test of the theory that the locus associated with the disorder was at 15q13-q14, FMN1 and GREM1 were eliminated as candidates.
It is associated with "LRP4".
There is no known cure for this syndrome. Patients usually need ophthalmic surgery and may also need dental surgery
Genetic counseling and screening of the mother's relatives is recommended.
Congenital causes include: Aarskog syndrome, Albright's hereditary osteodystrophy, and Apert syndrome. Can be caused by a trauma, although the exact mechanism is not known.
This syndrome is due to mutations in the Nance Horan gene (NHS) which is located on the short arm of the X chromosome (Xp22.13).
When it comes to treatment it is important to differentiate a thumb that needs stability, more web width and function, or a thumb that needs to be replaced by the index finger. Severe thumb hypoplasia is best treated by pollicization of the index finger. Less severe thumb hypoplasia can be reconstructed by first web space release, ligament reconstruction and muscle or tendon transfer.
It has been recommended that pollicization is performed before 12 months, but a long-term study of pollicizations performed between the age of 9 months and 16 years showed no differences in function related to age at operation.
It is important to know that every reconstruction of the thumb never gives a normal thumb, because there is always a decline of function. When a child has a good index finger, wrist and fore-arm the maximum strength of the thumb will be 50% after surgery in comparison with a normal thumb. The less developed the index finger, wrist and fore-arm is, the less strength the reconstructed thumb will have after surgery.
Catel–Manzke syndrome is a rare genetic disorder characterized by distinctive abnormalities of the index fingers; the classic features of Pierre Robin syndrome; occasionally with additional physical findings. "Pierre Robin syndrome" refers to a sequence of abnormalities that may occur as a distinct syndrome or as part of another underlying disorder. Pierre Robin syndrome is characterized by an unusually small jaw (micrognathia), downward displacement or retraction of the tongue (glossoptosis), and incomplete closure of the roof of the mouth (cleft palate). It is also linked to hyper mobility syndrome.