Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
A study, in community dwelling older adults with an average age of 67 years, found the UK prevalence of sarcopenia to be 4.6% in men and 7.9% in women using the EWGSOP approach. Another study, conducted in the United States among older adults with an average age of 70.1 years, found the prevalence of sarcopenia to be 36.5%. Sarcopenia affects about half of people over 80 in one state in the USA.
Lack of exercise is thought to be a significant risk factor for sarcopenia. Even highly trained athletes experience its effects; master-class athletes who continue to train and compete throughout their adult lives exhibit a progressive loss of muscle mass and strength, and records in speed and strength events decline progressively after age 30.
Master-class athletes maintain a high level of fitness throughout their lifespan. Even among master athletes, performance of marathon runners and weight lifters declines after approximately 40 years of age, with peak levels of performance decreased by approximately 50% by 80 years of age.
However a gradual loss of muscle fibres begins only at approximately 50 years of age.
Exercise is of interest in treatment of sarcopenia; evidence indicates increased ability and capacity of skeletal muscle to synthesize proteins in response to short-term resistance exercise. A 2009 Cochrane review also found evidence that in older adults progressive resistance training can improve physical performance (gait speed) and muscular strength, which are two key components of sarcopenia.
Malnutrition and being underweight are more common in the elderly than in adults of other ages. If elderly people are healthy and active, the aging process alone does not usually cause malnutrition. However, changes in body composition, organ functions, adequate energy intake and ability to eat or access food are associated with aging, and may contribute to malnutrition. Sadness or depression can play a role, causing changes in appetite, digestion, energy level, weight, and well-being. A study on the relationship between malnutrition and other conditions in the elderly found that malnutrition in the elderly can result from gastrointestinal and endocrine system disorders, loss of taste and smell, decreased appetite and inadequate dietary intake. Poor dental health, ill-fitting dentures, or chewing and swallowing problems can make eating difficult. As a result of these factors, malnutrition is seen to develop more easily in the elderly.
Rates of malnutrition tend to increase with age with less than 10 percent of the "young" elderly (up to age 75) malnourished, while 30 to 65 percent of the elderly in home care, long-term care facilities, or acute hospitals are malnourished. Many elderly people require assistance in eating, which may contribute to malnutrition. Because of this, one of the main requirements of elderly care is to provide an adequate diet and all essential nutrients.
In Australia malnutrition or risk of malnutrition occurs in 80 percent of elderly people presented to hospitals for admission. Malnutrition and weight loss can contribute to sarcopenia with loss of lean body mass and muscle function. Abdominal obesity or weight loss coupled with sarcopenia lead to immobility, skeletal disorders, insulin resistance, hypertension, atherosclerosis, and metabolic disorders. A paper from the "Journal of the American Dietetic Association" noted that routine nutrition screenings represent one way to detect and therefore decrease the prevalence of malnutrition in the elderly.
During pregnancy and breastfeeding, women must ingest enough nutrients for themselves and their child, so they need significantly more protein and calories during these periods, as well as more vitamins and minerals (especially iron, iodine, calcium, folic acid, and vitamins A, C, and K). In 2001 the FAO of the UN reported that iron deficiency afflicted 43 percent of women in developing countries and increased the risk of death during childbirth. A 2008 review of interventions estimated that universal supplementation with calcium, iron, and folic acid during pregnancy could prevent 105,000 maternal deaths (23.6 percent of all maternal deaths).
Frequent pregnancies with short intervals between them and long periods of breastfeeding add an additional nutritional burden.
The exact mechanism in which these diseases cause cachexia is poorly understood, but there is probably a role for inflammatory cytokines, such as tumor necrosis factor-alpha (which is also nicknamed 'cachexin' or 'cachectin'), interferon gamma and interleukin 6, as well as the tumor-secreted proteolysis-inducing factor.
Related syndromes include kwashiorkor and marasmus, although these do not always have an underlying causative illness and are most often symptomatic of severe malnutrition.
Those suffering from the eating disorder anorexia nervosa appear to have high plasma levels of ghrelin. Ghrelin levels are also high in patients who have cancer-induced cachexia.
Osteoporosis is an age-related disease of bone that leads to an increased risk of fracture. In osteoporosis the bone mineral density (BMD) is reduced, bone microarchitecture is disrupted, and the amount and variety of proteins in bone is altered. Osteoporosis is defined by the World Health Organization (WHO) in women as a bone mineral density 2.5 standard deviations below peak bone mass (20-year-old healthy female average) as measured by DXA; the term "established osteoporosis" includes the presence of a fragility fracture.
Osteoporosis is most common in women after menopause, when it is called "postmenopausal osteoporosis", but may also develop in men, and may occur in anyone in the presence of particular hormonal disorders and other chronic diseases or as a result of medications, specifically glucocorticoids, when the disease is called steroid- or glucocorticoid-induced osteoporosis (SIOP or GIOP). Given its influence in the risk of fragility fracture, osteoporosis may significantly affect life expectancy and quality of life.
It has been suggested that the biological underpinnings of frailty are multifactorial, involving dysregulation across many physiological systems. A proinflammatory state, sarcopenia, anemia, relative deficiencies in anabolic hormones (androgens and growth hormone) and excess exposure to catabolic hormones (cortisol), insulin resistance, glucose levels, compromised altered immune function, micronutrient deficiencies and oxidative stress are each individually associated with a higher likelihood of frailty. Additional findings show that the risk of frailty increases with the number of dysregulated physiological systems in a nonlinear pattern, independent of chronic diseases and chronologic age, suggesting synergistic effects of individual abnormalities that on their own may be relatively mild. The clinical implication of this finding is that interventions that affect multiple systems may yield greater, synergistic benefits in prevention and treatment of frailty than interventions that affect only one system.
Associations between specific disease states are also associated with and frailty have also been observed, including cardiovascular disease, diabetes mellitus, renal insufficiency and other diseases in which inflammation is prominent. To the extent that dysregulation across several physiologic systems underlie the pathogenesis of the frailty, specific disease states are likely concurrent manifestations of the underlying impaired physiologic function and regulation. It is possible that clinically measurable disease states can manifest themselves or be captured prior to the onset of frailty. No single disease state is necessary and sufficient for the pathogenesis of frailty, since many individuals with chronic diseases are not frail. Therefore, rather than being dependent on the presence of measurable diseases, frailty is an expression of a critical mass of physiologic impairments.
The disease is caused due to a variety of reasons:
- It can be due to aging, wherein muscles become weak due to a lack of exercise, and the individual gains weight due to the same reason.
- In other cases, the cause is genetic, wherein the individual is born with a reduced ability to grow muscle mass.
The symptoms are basically the same as that of sarcopenia and obesity. The individual may show a BMI that is appropriate and healthy to his or her age but will look fat in appearance.
Risk factors for osteoporotic fracture can be split between nonmodifiable and (potentially) modifiable. In addition, osteoporosis is a recognized complication of specific diseases and disorders. Medication use is theoretically modifiable, although in many cases, the use of medication that increases osteoporosis risk may be unavoidable.
Caffeine is not a risk factor for osteoporosis.
It is more likely in females than males.
Cachexia or wasting syndrome is loss of weight, muscle atrophy, fatigue, weakness, and significant loss of appetite in someone who is not actively trying to lose weight.
Cachexia is seen in people with cancer, AIDS, coeliac disease, chronic obstructive pulmonary disease, multiple sclerosis, Rheumatoid arthritis, congestive heart failure, tuberculosis, familial amyloid polyneuropathy, mercury poisoning (acrodynia), Crohn's disease, untreated/severe Type 1 Diabetes Mellitus, anorexia nervosa, and hormonal deficiency.
It is a positive risk factor for death, meaning if the person has cachexia, the chance of death from the underlying condition is increased dramatically. It can be a sign of various underlying disorders; when a patient presents with cachexia, a doctor will generally consider the possibility of adverse drug reactions, cancer, metabolic acidosis, certain infectious diseases (e.g., tuberculosis, AIDS), chronic pancreatitis, and some autoimmune disorders. Cachexia physically weakens patients to a state of immobility stemming from loss of appetite, asthenia, and anemia, and response to standard treatment is usually poor. Cachexia includes sarcopenia as a part of its pathology. The term is from Greek κακός "kakos" "bad" and ἕξις "hexis" "condition".
Many diseases and disorders have been associated with osteoporosis. For some, the underlying mechanism influencing the bone metabolism is straightforward, whereas for others the causes are multiple or unknown.
- In general, immobilization causes bone loss (following the 'use it or lose it' rule). For example, localized osteoporosis can occur after prolonged immobilization of a fractured limb in a cast. This is also more common in active people with a high bone turn-over (for example, athletes). Other examples include bone loss during space flight or in people who are bedridden or use wheelchairs for various reasons.
- Hypogonadal states can cause secondary osteoporosis. These include Turner syndrome, Klinefelter syndrome, Kallmann syndrome, anorexia nervosa, andropause, hypothalamic amenorrhea or hyperprolactinemia. In females, the effect of hypogonadism is mediated by estrogen deficiency. It can appear as early menopause (1 year). Bilateral oophorectomy (surgical removal of the ovaries) and premature ovarian failure cause deficient estrogen production. In males, testosterone deficiency is the cause (for example, andropause or after surgical removal of the testes).
- Endocrine disorders that can induce bone loss include Cushing's syndrome, hyperparathyroidism, hyperthyroidism, hypothyroidism, diabetes mellitus type 1 and 2, acromegaly, and adrenal insufficiency.
- Malnutrition, parenteral nutrition and malabsorption can lead to osteoporosis. Nutritional and gastrointestinal disorders that can predispose to osteoporosis include undiagnosed and untreated coeliac disease (both symptomatic and asymptomatic people), Crohn's disease, ulcerative colitis, cystic fibrosis, surgery (after gastrectomy, intestinal bypass surgery or bowel resection) and severe liver disease (especially primary biliary cirrhosis). People with lactose intolerance or milk allergy may develop osteoporosis due to restrictions of calcium-containing foods. Individuals with bulimia can also develop osteoporosis. Those with an otherwise adequate calcium intake can develop osteoporosis due to the inability to absorb calcium and/or vitamin D. Other micronutrients such as vitamin K or vitamin B deficiency may also contribute.
- People with rheumatologic disorders such as rheumatoid arthritis, ankylosing spondylitis, systemic lupus erythematosus and polyarticular juvenile idiopathic arthritis are at increased risk of osteoporosis, either as part of their disease or because of other risk factors (notably corticosteroid therapy). Systemic diseases such as amyloidosis and sarcoidosis can also lead to osteoporosis.
- Renal insufficiency can lead to renal osteodystrophy.
- Hematologic disorders linked to osteoporosis are multiple myeloma and other monoclonal gammopathies, lymphoma, leukemia, mastocytosis, hemophilia, sickle-cell disease and thalassemia.
- Several inherited disorders have been linked to osteoporosis. These include osteogenesis imperfecta, Marfan syndrome, hemochromatosis, hypophosphatasia (for which it is often misdiagnosed), glycogen storage diseases, homocystinuria, Ehlers–Danlos syndrome, porphyria, Menkes' syndrome, epidermolysis bullosa and Gaucher's disease.
- People with scoliosis of unknown cause also have a higher risk of osteoporosis. Bone loss can be a feature of complex regional pain syndrome. It is also more frequent in people with Parkinson's disease and chronic obstructive pulmonary disease.
- People with Parkinson's disease have a higher risk of broken bones. This is related to poor balance and poor bone density. In Parkinson’s disease there may be a link between the loss of dopaminergic neurons and altered calcium metabolism (and iron metabolism) causing a stiffening of the skeleton and kyphosis.
In post-menopausal women, the walls of the vagina become thinner (atrophic vaginitis). The mechanism for the age-related condition is not yet clear, though there are theories that the effect is caused by decreases in estrogen levels. This atrophy, and that of the breasts concurrently, is consistent with the homeostatic (normal development) role of atrophy in general, as after menopause the body has no further functional biological need to maintain the reproductive system which it has permanently shut down.
The adrenal glands atrophy during prolonged use of exogenous glucocorticoids like prednisone. Atrophy of the breasts can occur with prolonged estrogen reduction, as with anorexia nervosa or menopause. Testicular atrophy with prolonged use of enough exogenous sex steroid (either androgen or estrogen) to reduce gonadotropin secretion.
Inactivity and starvation in mammals lead to atrophy of skeletal muscle, accompanied by a smaller number and size of the muscle cells as well as lower protein content. In humans, prolonged periods of immobilization, as in the cases of bed rest or astronauts flying in space, are known to result in muscle weakening and atrophy. Such consequences are also noted in small hibernating mammals like the golden-mantled ground squirrels and brown bats.
Bears are an exception to this rule; species in the family Ursidae are famous for their ability to survive unfavorable environmental conditions of low temperatures and limited nutrition availability during winter by means of hibernation. During that time, bears go through a series of physiological, morphological and behavioral changes. Their ability to maintain skeletal muscle number and size at time of disuse is of significant importance.
During hibernation, bears spend four to seven months of inactivity and anorexia without undergoing muscle atrophy and protein loss. There are a few known factors that contribute to the sustaining of muscle tissue. During the summer period, bears take advantage of the nutrition availability and accumulate muscle protein. The protein balance at time of dormancy is also maintained by lower levels of protein breakdown during the winter time. At times of immobility, muscle wasting in bears is also suppressed by a proteolytic inhibitor that is released in circulation. Another factor that contributes to the sustaining of muscle strength in hibernating bears is the occurrence of periodic voluntary contractions and involuntary contractions from shivering during torpor. The three to four daily episodes of muscle activity are responsible for the maintenance of muscle strength and responsiveness in bears during hibernation.
Muscular atrophy decreases qualities of life as the sufferer becomes unable to perform certain tasks or worsen the risks of accidents while performing those (like walking). Muscular atrophy increases the risks of falling in conditions such as inclusion body myositis (IBM) . Muscular atrophy affects a high number of the elderly.
About 1 in 4,000 children in the United States will develop mitochondrial disease by the age of 10 years. Up to 4,000 children per year in the US are born with a type of mitochondrial disease. Because mitochondrial disorders contain many variations and subsets, some particular mitochondrial disorders are very rare.
The average number of births per year among women at risk for transmitting mtDNA disease is estimated to approximately 150 in the United Kingdom and 800 in the United States.
In medicine, split hand syndrome is a neurological syndrome in which the hand muscles on the side of the thumb (lateral, thenar eminence) appear wasted, whereas the muscles on the side of the little finger (medial, hypothenar eminence) are spared. Anatomically, the abductor pollicis brevis and first dorsal interosseous muscle are more wasted than the abductor digiti minimi.
If lesions affecting the branches of the ulnar nerve that run to the wasted muscles are excluded, the lesion is almost sure to be located in the anterior horn of the spinal cord at the C8-T1 level. It has been proposed as a relatively specific sign for amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease). It can also occur in other disorders affecting the anterior horn, such as spinal muscular atrophy, Charcot-Marie-Tooth disease, poliomyelitis and progressive muscular atrophy. A slow onset and a lack of pain or sensorial symptoms are arguments against a lesion of the spinal root or plexus brachialis. To an extent, these features can also be seen in normal aging (although technically, the apparent muscle wasting is sarcopenia rather than atrophy).
The term split hand syndrome was first coined in 1994 by a researcher from the Cleveland Clinic called Asa J. Wilbourn.
Mitochondrial diseases are a group of disorders caused by dysfunctional mitochondria, the organelles that generate energy for the cell. Mitochondria are found in every cell of the human body except red blood cells, and convert the energy of food molecules into the ATP that powers most cell functions.
Mitochondrial diseases are sometimes (about 15% of the time) caused by mutations in the mitochondrial DNA that affect mitochondrial function. Other mitochondrial diseases are caused by mutations in genes of the nuclear DNA, whose gene products are imported into the mitochondria (mitochondrial proteins) as well as acquired mitochondrial conditions. Mitochondrial diseases take on unique characteristics both because of the way the diseases are often inherited and because mitochondria are so critical to cell function. The subclass of these diseases that have neuromuscular disease symptoms are often called a mitochondrial myopathy.