Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In terms of frequency, is estimated at 2 per 100,000, it has identified in different regions of the world. Some clusters of certain types of autosomal dominant cerebellar ataxia reach a prevalence of 5 per 100,000.
The hereditary ataxias are categorized by mode of inheritance and causative gene or chromosomal locus. The hereditary ataxias can be inherited in an autosomal dominant, autosomal recessive, or X-linked manner.
- Many types of autosomal dominant cerebellar ataxias for which specific genetic information is available are now known. Synonyms for autosomal-dominant cerebellar ataxias (ADCA) used prior to the current understanding of the molecular genetics were Marie's ataxia, inherited olivopontocerebellar atrophy, cerebello-olivary atrophy, or the more generic term "spinocerebellar degeneration." (Spinocerebellar degeneration is a rare inherited neurological disorder of the central nervous system characterized by the slow degeneration of certain areas of the brain. There are three forms of spinocerebellar degeneration: Types 1, 2, 3. Symptoms begin during adulthood.)
- There are five typical "autosomal-recessive" disorders in which ataxia is a prominent feature: Friedreich ataxia, ataxia-telangiectasia, ataxia with vitamin E deficiency, ataxia with oculomotor apraxia (AOA), spastic ataxia. Disorder subdivisions: Friedreich's ataxia, Spinocerebellar ataxia, Ataxia telangiectasia, Vasomotor ataxia, Vestibulocerebellar, Ataxiadynamia, Ataxiophemia, Olivopontocerebellar atrophy, and Charcot-Marie-Tooth disease.
- There have been reported cases where a polyglutamine expansion may lengthen when passed down, which often can result in an earlier age-of-onset and a more severe disease phenotype for individuals who inherit the disease allele. This falls under the category of genetic anticipation.
In terms of the genetics of autosomal dominant cerebellar ataxia 11 of 18 known genes are caused by repeated expansions in corresponding proteins, sharing the same mutational mechanism. SCAs can be caused by conventional mutations or large rearrangements in genes that make glutamate and calcium signaling, channel function, tau regulation and mitochondrial activity or RNA alteration.
The mechanism of Type I is not completely known, however Whaley, et al. suggest the polyglutamine product is toxic to the cell at a protein level, this effect may be done by transcriptional dysregulation and disruption of calcium homeostasis which causes apoptosis to occur earlier.
A few SCAs remain unspecified and can not be precisely diagnosed, but in the last decade genetic testing has allowed precise identification of dozens of different SCAs and more tests are being added each year. In 2008, a genetic ataxia blood test developed to test for 12 types of SCA, Friedreich's ataxia, and several others. However, since not every SCA has been genetically identified some SCAs are still diagnosed by neurological examination, which may include a physical exam, family history, MRI scanning of the brain and spine, and spinal tap.
Many SCAs below fall under the category of polyglutamine diseases, which are caused when a disease-associated protein (i.e., ataxin-1, ataxin-3, etc.) contains a large number of repeats of glutamine residues, termed a polyQ sequence or a "CAG trinucleotide repeat" disease for either the one-letter designation or codon for glutamine respectively. The threshold for symptoms in most forms of SCA is around 35, though for SCA3 it extends beyond 50. Most polyglutamine diseases are dominant due to the interactions of resulting polyQ tail.
The first ataxia gene was identified in 1993 and called "Spinocerebellar ataxia type 1" (SCA1); later genes were called SCA2, SCA3, etc. Usually, the "type" number of "SCA" refers to the order in which the gene was found. At this time, there are at least 29 different gene mutations that have been found.
The following is a list of some of the many types of "Spinocerebellar ataxia".
Others include SCA18, SCA20, SCA21, SCA23, SCA26, SCA28, and SCA29.
Four X-linked types have been described (, , , ), but only the first of these has so far been tied to a gene (SCAX1).