Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
The exact mechanisms of these diseases are not well understood. GNE/MNK a key enzyme in the sialic acid biosynthetic pathway, and loss-of-function mutations in GNE/MNK may lead to a lack of sialic acid, which in turn could affect sialoglycoproteins. GNE knockout mice show problems similar to people with IBM and in people with IBM dystroglycan has been found to lack sialic acid. However, the part of the dystroglycan that is important in muscle function does not seem to be affected. Another protein, neural cell adhesion molecule is under-sialyated in people with IBM, but as of 2016 it had no known role in muscle function.
The Roussy–Lévy syndrome is not a fatal disease and life expectancy is normal. However, due to progressive muscle wasting patients may need supportive orthopaedic equipment or wheelchair assistance.
X-linked myopathy with excessive autophagy (XMEA) is a rare childhood onset disease characterized by slow progressive vacuolation and atrophy of skeletal muscle. There is no known cardiac or intellectual involvement.
As of 2017, approximately 800 cases of FOP have been confirmed worldwide making FOP one of the rarest diseases known. The estimated incidence of FOP is 0.5 cases per million people and affects all races.
A 2006 study followed 223 patients for a number of years. Of these, 15 died, with a median age of 65 years. The authors tentatively concluded that this is in line with a previously reported estimate of a shortened life expectancy of 10-15 years (12 in their data).
Facioscapulohumeral muscular dystrophy (FSHMD, FSHD or FSH)—originally named Landouzy-Dejerine—is a usually autosomal dominant inherited form of muscular dystrophy (MD) that initially affects the skeletal muscles of the face (facio), scapula (scapulo) and upper arms (humeral). FSHD is the third most common genetic disease of skeletal muscle. Orpha.net lists the prevalence as 4/100,000 while a 2014 population-based study in the Netherlands reported a significantly higher prevalence of 12 in 100,000.
Symptoms may develop in early childhood and are usually noticeable in the teenage years, with 95% of affected individuals manifesting disease by age 20 years. A progressive skeletal muscle weakness usually develops in other areas of the body as well; often the weakness is asymmetrical. Life expectancy can be threatened by respiratory insufficiency, and up to 20% of affected individuals become severely disabled, requiring use of a wheel chair or mobility scooter. In a Dutch study, approximately 1% of patients required (nocturnal or diurnal) ventilatory support. Non-muscular symptoms frequently associated with FSHD include subclinical sensorineural hearing loss and retinal telangiectasia.
In more than 95% of known cases, the disease is associated with contraction of the D4Z4 repeat in the 4q35 subtelomeric region of Chromosome 4. Seminal research published in August 2010 now shows the disease requires a second mechanism, which for the first time provides a unifying theory for its underlying genetics. The second mechanism is a "toxic gain of function" of the DUX4 gene, which is the first time in genetic research that a "dead gene" has been found to "wake up" and cause disease.
Building on the 2010 unified theory of FSHD, researchers in 2014 published the first proposed pathophysiology definition of the disease and four viable therapeutic targets for possible intervention points.
Central core disease (CCD), also known as central core myopathy, is an autosomal dominant congenital myopathy (inborn muscle disorder). It was first described by Shy and Magee in 1956. It is characterized by the appearance of the myofibril under the microscope.
Because lack of sialic acid appears to be part of the pathology of IBM caused by GNE mutations, clinical trials with sialic acid supplements, and with a precursor of sialic acid, N-Acetylmannosamine, have been conducted, and as of 2016 further trials were planned.
Paramyotonia congenita is considered an extremely rare disorder, though little epidemiological work has been done. Prevalence is generally higher in European-derived populations and lower among Asians. Epidemiological estimates have been provided for the German population. There, it was estimated that the prevalence of PC is between 1:350,000 (0.00028%) and 1:180,000 (0.00056%). However, the German population of patients with PC is not uniformly distributed across the country. Many individuals with PC herald from the Ravensberg area in North-West Germany, where a founder effect seems to be responsible for most cases. The prevalence here is estimated at 1:6000 or 0.017%.
Central core disease is inherited in an autosomal dominant fashion. Most cases have demonstrable mutations in the ryanodine receptor type 1 ("RYR1") gene, which are often "de novo" (newly developed). People with CCD are at risk for malignant hyperthermia (MH) when receiving general anesthesia.
dHMN V has a pattern of autosomal dominance, meaning that only one copy of the gene is needed for the development of the disease. However, there is incomplete penetrance of this disorder, meaning that some individuals with the disease-causing mutations will not display any symptoms. Mutations on chromosome 7 have been linked to this disease. It is allelic (i.e., caused by mutations on the same gene) with Charcot–Marie–Tooth disease and with Silver’s Syndrome, a disorder also characterized by small muscle atrophy in the hands.
Another rare form of dHMN V is associated with a splicing mutation in REEP-1, a gene often associated with hereditary spastic neuroplegia.
In 2007 the FSHD Global Research Foundation was established to increase the amount of funding available to research bodies. The Foundation has identified 13 priority areas of interest for FSHD research.
New research resources have become available for the NM community, such as the CMDIR (registry) and the CMD-TR (biorepository). These two resources connect families and individuals interested in participating in research with the scientists that aim to treat or cure NM. Some research on NM seeks to better understand the molecular effects the gene mutations have on muscle cells and the rest of the body and to observe any connections NM may have to other diseases and health complications.
Roussy–Lévy syndrome, also known as Roussy–Lévy hereditary areflexic dystasia, is a rare genetic disorder of humans that results in progressive muscle wasting. It is caused by mutations in the genes that code for proteins necessary for the functioning of the myelin sheath of the neurons, affecting the conductance of nerve signals and resulting in loss of muscles' ability to move.
The condition affects people from infants through adults and is inherited in an autosomal dominant manner. Currently, no cure is known for the disorder.
The incidence of this disease is not precisely known but it is considered to be rare (< 1/10 population). It has been reported in 15 families to date mostly from Canada, Finland and France.
This disease usually presents between the ages of 5 to 10 years old. The usual picture is with weakness involving the upper legs and affects activities such as running and climbing stairs. As the condition progresses, patients tend to experience weakness in their lower legs and arms. Some remain able to walk in advanced age, while others require assistance in adulthood.
X-linked spinal muscular atrophy type 2 (SMAX2, XLSMA), also known as arthrogryposis multiplex congenita X-linked type 1 (AMCX1), is a rare neurological disorder involving death of motor neurons in the anterior horn of spinal cord resulting in generalised muscle wasting (atrophy). The disease is caused by a mutation in "UBA1" gene and is passed in a X-linked recessive manner by carrier mothers to affected sons.
Affected babies have general muscle weakness, weak cry and floppy limbs; consequently, the condition is usually apparent at or even before birth. Symptoms resemble the more severe forms of the more common spinal muscular atrophy (SMA); however, SMAX2 is caused by a different genetic defect and only genetic testing can correctly identify the disease.
The disorder is usually fatal in infancy or early childhood due to progressive respiratory failure, although survival into teenage years have been reported. As with many genetic disorders, there is no known cure to SMAX2. Appropriate palliative care may be able to increase quality of life and extend lifespan.
In northern Scandinavia, the prevalence of myotonia congenita has been estimated at 1:10,000.
Myotonia congenita is estimated to affect 1 in 1,000,000 people worldwide.
Distal hereditary motor neuropathy type V (dHMN V) is a particular type of neuropathic disorder. In general, distal hereditary motor neuropathies affect the axons of distal motor neurons and are characterized by progressive weakness and atrophy of muscles of the extremities. It is common for them to be called "spinal forms of Charcot-Marie-Tooth disease (CMT)", because the diseases are closely related in symptoms and genetic cause. The diagnostic difference in these diseases is the presence of sensory loss in the extremities. There are seven classifications of dHMNs, each defined by patterns of inheritance, age of onset, severity, and muscle groups involved. Type V (sometimes notated as Type 5) is a disorder characterized by autosomal dominance, weakness of the upper limbs that is progressive and symmetrical, and atrophy of the small muscles of the hands.
FOP is caused by an autosomal dominant allele on chromosome 2q23-24. The allele has variable expressivity, but complete penetrance. Most cases are caused by spontaneous mutation in the gametes; most people with FOP cannot or choose not to have children. A similar but less catastrophic disease is fibrous dysplasia, which is caused by a post-zygotic mutation.
A mutation in the gene ACVR1 (also known as activin-like kinase 2 (ALK2)) is responsible for the disease. ACVR1 encodes activin receptor type-1, a BMP type-1 receptor. The mutation causes substitution of codon 206 from arginine to histidine in the ACVR1 protein. This substitution causes abnormal activation of ACVR1, leading to the transformation of connective tissue and muscle tissue into a secondary skeleton. This causes endothelial cells to transform to mesenchymal stem cells and then to bone.
Paramyotonia congenita (as well as hyperkalemic periodic paralysis and the potassium-aggravated myotonias) is caused by mutations in a sodium channel, SCN4A. The phenotype of patients with these mutations is indicated in Table 1. These mutations affect fast inactivation of the encoded sodium channel. There are also indications that some mutations lead to altered activation and deactivation. The result of these alterations in channel kinetics is that there is prolonged inward (depolarizing) current following muscle excitation. There is also the introduction of a “window current” due to changes in the voltage sensitivity of the channel’s kinetics. These lead to a general increase in cellular excitability, as shown in figure 1.
There has been one study of a large number of patients with paramyotonia congenita. Of 26 kindreds, it found that 17 (71%) had a mutation in SCN4A while 6 (29%) had no known mutation. There is no large difference between these two groups except that patients with no known mutation have attacks precipitated less by cold but more by hunger, are much more likely to have normal muscle biopsies, and show less decreased compound muscle action potentials when compared to patients with known mutations.
Both Thomsen and Becker myotonia have high phenotype variability. Severity of symptoms can vary greatly between individuals and throughout the lives of the individuals themselves. This may be partly because there are over 130 currently known different mutations that can cause the disorder, each with their own specifics, and also because myotonia congenita is an ion channel disorder, and ion channels are sensitive to internal and external environmental factors. It has been shown that pregnancy and the use of diuretics aggravate myotonia, and both these conditions are linked to the loss of divalent cations such as magnesium and calcium. It has further been shown that in pharmacological induced myotonia in isolated rat muscle, myotonia could be dampened by increasing the magnesium and calcium content of the extracellular medium. This has also been shown for isolated human muscle.
Adrenaline/epinephrine is well known to make myotonia worse in most individuals with the disorder, and a person with myotonia congenita may experience a sudden increase in difficulty with mobility in a particularly stressful situation during which adrenaline is released.
Due to the invisible nature of the disorder, the fact that those with myotonia congenita often appear very fit and able bodied, the general lack of knowledge about the disorder by the general and medical community, and often by the individual themselves, and the potential for inconsistency with the symptoms, many people with myotonia congenita have experienced a degree of social persecution at one time or another because of the effects of their disorder.
Although there is no cure for NM, it is possible, and common for many people live healthy active lives even with moderate to severe cases. Research continues to seek ways to ameliorate debilitating symptoms and lengthen the life-span in quality ways for those affected. Some people have seen mild improvements in secretion handling, energy level, and physical functioning with supplemental L-tyrosine, an amino acid that is available through health centers. Some symptoms may worsen as the patient ages. Muscle loss increases with age naturally, but it is even more significant with nemaline myopathy.
Some horse organizations have instituted rules to attempt to eliminate this widespread disease. The American Quarter Horse Association (AQHA) mandates testing for foals descended from Impressive if both of the foal's parents were not homozygous negative (N/N) for the gene, and, since 2007, has not registered foals homozygous (H/H) for the gene. Since 2007, the Appaloosa Horse Club (ApHC) has required foals descended from Impressive to be tested, so that the results may be recorded on its certificate. The American Paint Horse Association (APHA) mandated that, after 2017, stallions must be tested for HYPP so that mare owners may make an informed decision before choosing a stallion for breeding to their mare.
Myotubular myopathy, also known as centeronuclear myopathy, is recognized by pain during exercise and difficulty walking. People affected by this disease typically are wheel-chair-bound by middle adulthood, have weakness in the muscles involved in eye movement, nerve function disorders, and some form of intellectual disability. Myotubular myopathy is very rare, with less than 50 families currently affected.
Genetically, myotubular myopathy can have two causes: autosomal dominant and autosomal recessive. When caused by a mutation in the DNM2 gene, the disorder is autosomal dominant, meaning it can be passed on by one mutated gene. When the mutation takes place in the BIN1 gene, the disease is instead autosomal recessive, and both genes must be mutated for the disease to be inherited. Autosomal recessive onset is most common.
The pathogenesis of this disease is unclear. Arteriosclerosis obliterans has been postulated as the cause, along with errors of the clotting and fibrinolytic pathways such as antiphospholipid syndrome.