Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
It has been suggested that women of child bearing age or young girls should not be given a transfusion with Rhc positive blood (or Kell positive blood for similar reasons). This would require a lot of extra work in blood transfusion departments and it is considered not economical to do the blood group screening at the present time.
It is theoretically likely that IgG anti-Rhc antibody injections would prevent sensitization to RBC surface Rhc antigens in a similar way that IgG anti-D antibodies (Rho(D) Immune Globulin) are used to prevent Rh disease, but the methods for IgG anti-Rhc antibodies have not been developed at the present time.
Suggestions have been made that women of child bearing age or young girls should not be given a transfusion with Kell positive blood. Donated blood is not currently screened (in the U.S.A.) for the Kell blood group antigens as it is not considered cost effective at this time.
It has been hypothesized that IgG anti-Kell antibody injections would prevent sensitization to RBC surface Kell antigens in a similar way that IgG anti-D antibodies (Rho(D) Immune Globulin) are used to prevent Rh disease, but the methods for IgG anti-Kell antibodies have not been developed at the present time.
Mothers who are negative for the Kell antigen develop antibodies after being exposed to red blood cells that are positive for Kell. Over half of the cases of hemolytic disease of the newborn owing the anti-Kell antibodies are caused by multiple blood transfusions, with the remainder due to a previous pregnancy with a Kell positive baby.
Hemolytic disease of the fetus and newborn (HDN) is a condition where the passage of maternal antibodies results in the hemolysis of fetal/neonatal red cells. The antibodies can be naturally occurring such as anti-A, and anti-B, or immune antibodies developed following a sensitizing event. Isoimmunization occurs when the maternal immune system is sensitized to red blood cell surface antigens. The most common causes of isoimmunization are blood transfusion, and fetal-maternal hemorrhage. The hemolytic process can result in anemia, hyperbilirubinemia, neonatal thrombocytopenia, and neonatal neutropenia. With the use of RhD Immunoprophylaxis, (commonly called Rhogam), the incidence of anti-D has decreased dramatically and other alloantibodies are now a major cause of HDN.
A Rhc negative mother can become sensitised by red blood cell (RBC) Rhc antigens by her first pregnancy with a Rhc positive fetus. The mother can make IgG anti-Rhc antibodies, which are able to pass through the placenta and enter the fetal circulation. If the fetus is Rhc positive alloimmune hemolysis can occur leading to HDN. This is similar as for Rh disease, which is usually caused when a RhD negative mother is sensitised by her first pregnancy with a RhD positive fetus.
Sensitization to Rhc antigens can also be caused by blood transfusion.
Complications of HDN could include kernicterus, hepatosplenomegaly, inspissated (thickened or dried) bile syndrome and/or greenish staining of the teeth, hemolytic anemia and damage to the liver due to excess bilirubin. Similar conditions include acquired hemolytic anemia, congenital toxoplasma and syphilis infection, congenital obstruction of the bile duct and cytomegalovirus infection.
- High at birth or rapidly rising bilirubin
- Prolonged hyperbilirubinemia
- Bilirubin Induced Neuorlogical Dysfunction
- Cerebral Palsy
- Kernicterus
- Neutropenia
- Thrombocytopenia
- Hemolytic Anemia - MUST NOT be treated with iron
- Late onset anemia - Must NOT be treated with iron. Can persist up to 12 weeks after birth.
In 2003, the incidence of Rh(D) sensitization in the United States was 6.8 per 1000 live births; 0.27% of women with an Rh incompatible fetus experience alloimmunization.
One study done by Moran et al., found that titers are not reliable for anti-E. Their most severe case of hemolytic disease of the newborn occurred with titers 1:2. Moran states that it would be unwise routinely to dismiss anti-E as being of little clinical consequence.
In the case of anti-E, the woman should be checked around 28 weeks to see if she has developed anti-c as well.
Most Rh disease can be prevented by treating the mother during pregnancy or promptly (within 72 hours) after childbirth. The mother has an intramuscular injection of anti-Rh antibodies (Rho(D) immune globulin). This is done so that the fetal rhesus D positive erythrocytes are destroyed before the immune system of the mother can discover them and become sensitized. This is passive immunity and the effect of the immunity will wear off after about 4 to 6 weeks (or longer depending on injected dose) as the anti-Rh antibodies gradually decline to zero in the maternal blood.
It is part of modern antenatal care to give all rhesus D negative pregnant women an anti-RhD IgG immunoglobulin injection at about 28 weeks gestation (with or without a booster at 34 weeks gestation). This reduces the effect of the vast majority of sensitizing events which mostly occur after 28 weeks gestation. Giving Anti-D to all Rhesus negative pregnant women can mean giving it to mothers who do not need it (because her baby is Rhesus negative or their blood did not mix). Many countries routinely give Anti-D to Rhesus D negative women in pregnancy. In other countries, stocks of Anti-D can run short or even run out. Before Anti-D is made routine in these countries, stocks should be readily available so that it is available for women who need Anti-D in an emergency situation.
A recent review found research into giving Anti-D to all Rhesus D negative pregnant women is of low quality. However the research did suggest that the risk of the mother producing antibodies to attack Rhesus D positive fetal cells was lower in mothers who had the Anti-D in pregnancy. There were also fewer mothers with a positive kleihauer test (which shows if the mother’s and unborn baby’s blood has mixed).
Anti-RhD immunoglobulin is also given to non-sensitized rhesus negative women immediately (within 72 hours—the sooner the better) after potentially sensitizing events that occur earlier in pregnancy.
The discovery of cell-free DNA in the maternal plasma has allowed for the non-invasive determination of the fetal RHD genotype. In May 2017, the Society for Obstetrics and Gynecology of Canada is now recommending that the optimal management of the D-negative pregnant woman is based on the prediction of the fetal D-blood group by cell-free DNA in maternal plasma with targeted antenatal anti-D prophylaxis. This provides the optimal care for D-negative pregnant women and has been adopted as the standard approach in a growing number of countries around the world. It is no longer considered appropriate to treat all D-negative pregnant women with human plasma derivatives when there are no benefits to her or to the fetus in a substantial percentage of cases.
Anti-A and anti-B antibodies are usually IgM and do not pass through the placenta, but some mothers "naturally" have IgG anti-A or IgG anti-B antibodies, which can pass through the placenta. Exposure to A-antigens and B-antigens, which are both widespread in nature, usually leads to the production of IgM anti-A and IgM anti-B antibodies but occasionally IgG antibodies are produced.
Some mothers may be sensitized by fetal-maternal transfusion of ABO incompatible red blood and produce immune IgG antibodies against the antigen they do not have and their baby does. For example, when a mother of genotype OO (blood group O) carries a fetus of genotype AO (blood group A) she may produce IgG anti-A antibodies. The father will either have blood group A, with genotype AA or AO, or more rarely, have blood group AB, with genotype AB.
It would be very rare for ABO sensitization to be caused by therapeutic blood transfusion as a great deal of effort and checking is done to ensure that blood is ABO compatible between the recipient and the donor.
In about a third of all ABO incompatible pregnancies maternal IgG anti-A or IgG anti-B antibodies pass through the placenta to the fetal circulation leading to a weakly positive direct Coombs test for the neonate's blood. However, ABO HDN is generally mild and short-lived and only occasionally severe because:
- IgG anti-A (or IgG anti-B) antibodies that enter the fetal circulation from the mother find A (or B) antigens on many different fetal cell types, leaving fewer antibodies available for binding onto fetal red blood cells.
- Fetal RBC surface A and B antigens are not fully developed during gestation and so there are a smaller number of antigenic sites on fetal RBCs.
During any pregnancy a small amount of the baby's blood can enter the mother's circulation. If the mother is Rh negative and the baby is Rh positive, the mother produces antibodies (including IgG) against the rhesus D antigen on her baby's red blood cells. During this and subsequent pregnancies the IgG is able to pass through the placenta into the fetus and if the level of it is sufficient, it will cause destruction of rhesus D positive fetal red blood cells leading to the development of Rh disease. It may thus be regarded as insufficient immune tolerance in pregnancy. Generally rhesus disease becomes worse with each additional rhesus incompatible pregnancy.
The main and most frequent sensitizing event is child birth (about 86% of sensitized cases), but fetal blood may pass into the maternal circulation earlier during the pregnancy (about 14% of sensitized cases). Sensitizing events during pregnancy include c-section, miscarriage, therapeutic abortion, amniocentesis, ectopic pregnancy, abdominal trauma and external cephalic version. However, in many cases there was no apparent sensitizing event.
The incidence of Rh disease in a population depends on the proportion that are rhesus negative. Many non-Caucasian people have a very low proportion who are rhesus negative, so the incidence of Rh disease is very low in these populations. In Caucasian populations about 1 in 10 of all pregnancies are of a rhesus negative woman with a rhesus positive baby. It is very rare for the first rhesus positive baby of a rhesus negative woman to be affected by Rh disease. The first pregnancy with a rhesus positive baby is significant for a rhesus negative woman because she can be sensitized to the Rh positive antigen. In Caucasian populations about 13% of rhesus negative mothers are sensitized by their first pregnancy with a rhesus positive baby. Without modern prevention and treatment, about 5% of the second rhesus positive infants of rhesus negative women would result in stillbirths or extremely sick babies. Many babies who managed to survive would be severely ill. Even higher disease rates would occur in the third and subsequent rhesus positive infants of rhesus negative women. By using anti-RhD immunoglobulin (Rho(D) immune globulin) the incidence is massively reduced.
Rh disease sensitization is about 10 times more likely to occur if the fetus is ABO compatible with the mother than if the mother and fetus are ABO incompatible.
The most rapidly effective treatment in infants with severe hemorrhage and/or severe thrombocytopenia (30,000 μL) an infusion of (1 g/kg/day for two days) in the infant has been shown to rapidly increase platelet count and reduce the risk of related injury.
After a first affected pregnancy, if a mother has plans for a subsequent pregnancy, then the mother and father should be typed for platelet antigens and the mother screened for alloantibodies. Testing is available through reference laboratories (such as ). testing of the father can be used to determine zygosiity of the involved antigen and therefore risk to future pregnancies (if homozygous for the antigen, all subsequent pregnancies will be affected, if heterozygous, there is an approximate 50% risk to each subsequent pregnancy). During subsequent pregnancies, the genotype of the fetus can also be determined using amniotic fluid analysis or maternal blood as early as 18 weeks gestation to definitively determine the risk to the fetus.
Immune thrombocytopenic purpura (), sometimes called idiopathic thrombocytopenic purpura is a condition in which autoantibodies are directed against a patient's own platelets, causing platelet destruction and thrombocytopenia. Anti-platelet autoantibodies in a pregnant woman with immune thrombocytopenic purpura will attack the patient's own platelets and will also cross the placenta and react against fetal platelets. Therefore, is a significant cause of fetal and neonatal immune thrombocytopenia. Approximately 10% of newborns affected by will have platelet counts <50,000 μL and 1% to 2% will have a risk of intracerebral hemorrhage comparable to infants with .
Mothers with thrombocytopenia or a previous diagnosis of should be tested for serum antiplatelet antibodies. A woman with symptomatic thrombocytopenia and an identifiable antiplatelet antibody should be started on therapy for their which may include steroids or . Fetal blood analysis to determine the platelet count is not generally performed as -induced thrombocytopenia in the fetus is generally less severe than . Platelet transfusions may be performed in newborns, depending on the degree of thrombocytopenia.
Acquired hemolytic anemia can be divided into immune and non-immune mediated forms of hemolytic anemia.
Cold agglutinins develop in more than 60% of patients with infectious mononucleosis, but hemolytic anemia is rare.
Classic chronic cold agglutinin disease is idiopathic, associated with symptoms and signs in relation to cold exposure.
Causes of the monoclonal secondary disease include the following:
- B-cell neoplasms - Waldenström macroglobulinemia, lymphoma, chronic lymphoid leukemia, myeloma
- Non hematologic neoplasms
Causes of polyclonal secondary cold agglutinin disease include the following:
- Mycoplasma infections.
- Viral infections: Infectious mononucleosis due to Epstein-Barr virus (EBV) or CMV, Mumps, varicella, rubella, adenovirus, HIV, influenza, hepatitis C.
- Bacterial infections: Legionnaire disease, syphilis, listeriosis and "Escherichia coli."
- Parasitic infections: Malaria and trypanosomiasis.
- Trisomy and translocation: Cytogenetic studies in patients with cold agglutinin disease have revealed the presence of trisomy 3 and trisomy 12. Translocation (8;22) has also been reported in association with cold agglutinin disease.
- Transplantation: Cold agglutinin–mediated hemolytic anemia has been described in patients after living-donor liver transplantation treated with tacrolimus and after bone marrow transplantation with cyclosporine treatments. It is postulated that such calcineurin inhibitors, which selectively affect T-cell function and spare B-lymphocytes, may interfere with the deletion of autoreactive T-cell clones, resulting in autoimmune disease.
- Systemic sclerosis: Cold agglutinin disease has been described in patients with sclerodermic features, with the degree of anemia being associated with increasing disease activity of the patient’s systemic sclerosis. This may suggest a close association between systemic rheumatic disease and autoimmune hematologic abnormalities.
- Hyperreactive malarial splenomegaly: Hyperreactive malarial splenomegaly (HMS) is an immunopathologic complication of recurrent malarial infection. Patients with HMS develop splenomegaly, acquired clinical immunity to malaria, high serum concentrations of anti-"Plasmodium" antibodies, and high titers of IgM, with a complement-fixing IgM that acts as a cold agglutinin.
- DPT vaccination: Diphtheria-pertussis-tetanus (DPT) vaccination has been implicated in the development of autoimmune hemolytic anemia caused by IgM autoantibody with a high thermal range. A total of 6 cases have been reported; 2 followed the initial vaccination and 4 followed the second or third vaccinations.
- Other: Equestrian perniosis is a rare cause of persistent elevated titers of cold agglutinins. Also rarely, the first manifestations of cold agglutinin disease can develop when a patient is subjected to hypothermia for cardiopulmonary bypass surgery.
Causes of increased foetal-maternal haemorrhage are seen as a result of trauma, placental abruption or may be spontaneous with no cause found.
Up to 30 mL of foetal-maternal transfusion may take place with no significant signs or symptoms seen in either mother or foetus. Loss in excess of this may result in significant morbidity and mortality to the fetus. Foetal-maternal haemorrhage is one cause of intrauterine death (IUD).
It is estimated that less than 1 mL of foetal blood is lost to the maternal circulation during normal labour in around 96% of normal deliveries. The loss of this small amount of blood may however be a sensitising event and stimulate antibody production to the foetal red blood cells, an example of which is Rhesus disease of the newborn.
Immune mediated hemolytic anaemia (direct Coombs test is positive)
- Autoimmune hemolytic anemia
- Warm antibody autoimmune hemolytic anemia
- Idiopathic
- Systemic lupus erythematosus (SLE)
- Evans' syndrome (antiplatelet antibodies and hemolytic antibodies)
- Cold antibody autoimmune hemolytic anemia
- Idiopathic cold hemagglutinin syndrome
- Infectious mononucleosis and mycoplasma (atypical) pneumonia
- Paroxysmal cold hemoglobinuria (rare)
- Alloimmune hemolytic anemia
- Hemolytic disease of the newborn (HDN)
- Rh disease (Rh D)
- ABO hemolytic disease of the newborn
- Anti-Kell hemolytic disease of the newborn
- Rhesus c hemolytic disease of the newborn
- Rhesus E hemolytic disease of the newborn
- Other blood group incompatibility (RhC, Rhe, Kidd, Duffy, MN, P and others)
- Alloimmune hemolytic blood transfusion reactions (i.e., from a non-compatible blood type)
- Drug induced immune mediated hemolytic anemia
- Penicillin (high dose)
- Methyldopa
The incidence of acute TTP in adults is around 1.7–4.5 per million and year. These cases are nearly all due to the autoimmune form of TTP, where autoantibodies inhibit ADAMTS13 activity. The prevalence of USS has not yet been determined but is assumed to constitute less than 5% of all acute TTP cases. The syndrome's inheritance is autosomal recessive, and is more often caused by compound heterozygous than homozygous mutations. The age of onset is variable and can be from neonatal age up to the 5th–6th decade. The risk of relapses differs between affected individuals. Minimization of the burden of disease can be reached by early diagnosis and initiation of prophylaxis if required.
In general, AIHA in children has a good prognosis and is self-limiting. However, if it presents within the first two years of life or in the teenage years, the disease often follows a more chronic course, requiring long-term immunosuppression, with serious developmental consequences. The aim of therapy may sometimes be to lower the use of steroids in the control of the disease. In this case, splenectomy may be considered, as well as other immunosuppressive drugs. Infection is a serious concern in patients on long-term immunosuppressant therapy, especially in very young children (less than two years).
Cold agglutinins, or cold autoantibodies, occur naturally in nearly all individuals. These natural cold autoantibodies occur at low titers, less than 1:64 measured at 4 °C, and have no activity at higher temperatures. Pathologic cold agglutinins occur at titers over 1:1000 and react at 28-31 °C and sometimes at 37 °C.
Cold agglutinin disease usually results from the production of a specific IgM antibody directed against the I/i antigens (precursors of the ABH and Lewis blood group substances) on red blood cells (RBCs). Cold agglutinins commonly have variable heavy-chain regions encoded by VH, with a distinct idiotype identified by the 9G4 rat murine monoclonal antibody.
Early onset sepsis can occur in the first week of life. It usually is apparent on the first day after birth. This type of infection is usually acquired before the birth of the infant. Premature rupture of membranes and other obstetrical complications can add to the risk of early-onset sepsis. If the amniotic membrane has been ruptured greater than 18 hours before delivery the infant may be at more risk for this complication. Prematurity, low birth weight, chorioamnionitis, maternal urinary tract infection and/or maternal fever are complications that increase the risk for early-onset sepsis. Early onset sepsis is indicated by serious respiratory symptoms. The infant usually suffers from pneumonia, hypothermia, or shock. The mortality rate is 30 to 50%.
Cold agglutinin disease can be either primary (arising spontaneously) or secondary (a result of another pathology).
- The primary form is caused by excessive cell proliferation of B lymphocytes.
- Secondary cold agglutinin disease is a result of an underlying condition.
- In adults, this is typically due to a lymphoproliferative disease such as lymphoma and chronic lymphoid leukemia, or infection. Waldenström's macroglobulinemia may also be positive for cold agglutinins.
- In children, cold agglutinin disease is often secondary to an infection, such as "Mycoplasma" pneumonia, mononucleosis, and HIV.
Sixty percent of mothers of preterm infants are infected with cytomegalovirus (CMV). Infection is asymptomatic in most instances but 9% to 12% of postnatally infected low birth weight, preterm infants have severe, sepsis-like infection. CMV infection duration can be long and result in pneumonitis in association with fibrosis. CMV infection in infants has an unexpected effect on the white blood cells of the immune system causing them to prematurely age. This leads to a reduced immune response similar to that found in the elderly.