Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In general, the prognosis for retinal migraine is similar to that of migraine headache with typical aura. As the true incidence of retinal migraine is unknown, it is uncertain whether there is a higher incidence of permanent neuroretinal injury. The visual field data suggests that there is a higher incidence of end arteriolar distribution infarction and a higher incidence of permanent visual field defects in retinal migraine than in clinically manifest cerebral infarctions in migraine with aura. One study suggests that more than half of reported "recurrent" cases of retinal migraine subsequently experienced permanent visual loss in that eye from infarcts, but more recent studies suggest such loss is a relatively rare side effect.
Treatment depends on identifying behavior that triggers migraine such as stress, sleep deprivation, skipped meals, food sensitivities, or specific activities. Medicines used to treat retinal migraines include aspirin, other NSAIDS, and medicines that reduce high blood pressure.
Scintillating scotomas are most commonly caused by cortical spreading depression, a pattern of changes in the behavior of nerves in the brain during a migraine. Migraines, in turn, may be caused by genetic influences and hormones. People with migraines often self-report triggers for migraines involving stress and a wide variety of foods. While monosodium glutamate (MSG) is frequently reported as a dietary trigger, some scientific studies do not support this claim.
The Framingham Heart Study, published in 1998, surveyed 5,070 people between ages 30–62 and found that scintillating scotomas without other symptoms occurred in 1.23% of the group. The study did not find a link between late-life onset scintillating scotoma and stroke.
Between 12 and 60% of people report foods as triggers. Evidence for such triggers, however, mostly relies on self-reports and is not rigorous enough to prove or disprove any particular triggers. A clear explanation for why food might trigger migraines is also lacking.
There does not appear to be evidence for an effect of tyramine on migraine. Likewise, while monosodium glutamate (MSG) is frequently reported, evidence does not consistently support that it is a dietary trigger.
Common triggers quoted are stress, hunger, and fatigue (these equally contribute to tension headaches). Psychological stress has been reported as a factor by 50 to 80% of people. Migraines have also been associated with post-traumatic stress disorder and abuse. Migraines are more likely to occur around menstruation. Other hormonal influences, such as menarche, oral contraceptive use, pregnancy, perimenopause, and menopause, also play a role. These hormonal influences seem to play a greater role in migraine without aura. Migraines typically do not occur during the second and third trimesters or following menopause.
Symptoms typically appear gradually over 5 to 20 minutes and generally last fewer than 60 minutes, leading to the headache in classic migraine with aura, or resolving without consequence in acephalgic migraine. Many migraine sufferers change from scintillating scotoma as a prodrome to migraine to scintillating scotoma without migraine. The scotoma typically spontaneously resolves within the stated time frame, leaving few or no subsequent symptoms, though some report fatigue, nausea, and dizziness as sequelae.
In general, children suffer from the same types of headaches as adults do, but their symptoms may be slightly different. The diagnostic approach to headache in children is similar to that of adults. However, young children may not be able to verbalize pain well. If a young child is fussy, they may have a headache.
Approximately 1% of Emergency Department visits for children are for headache. Most of these headaches are not dangerous. The most common type of headache seen in pediatric Emergency Rooms is headache caused by a cold (28.5%). Other headaches diagnosed in the Emergency Department include post-traumatic headache (20%), headache related to a problem with a ventriculoperitoneal shunt (a device put into the brain to remove excess CSF and reduce pressure in the brain) (11.5%) and migraine (8.5%). The most common serious headaches found in children include brain bleeds (subdural hematoma, epidural hematoma), brain abscesses, meningitis and ventriculoperitoneal shunt malfunction. Only 4–6.9% of kids with a headache have a serious cause.
Just as in adults, most headaches are benign, but when head pain is accompanied with other symptoms such as speech problems, muscle weakness, and loss of vision, a more serious underlying cause may exist: hydrocephalus, meningitis, encephalitis, abscess, hemorrhage, tumor, blood clots, or head trauma. In these cases, the headache evaluation may include CT scan or MRI in order to look for possible structural disorders of the central nervous system. If a child with a recurrent headache has a normal physical exam, neuroimaging is not recommended. Guidelines state children with abnormal neurologic exams, confusion, seizures and recent onset of worst headache of life, change in headache type or anything suggesting neurologic problems should receive neuroimaging.
When children complain of headaches, many parents are concerned about a brain tumor. Generally, headaches caused by brain masses are incapacitating and accompanied by vomiting. One study found characteristics associated with brain tumor in children are: headache for greater than 6 months, headache related to sleep, vomiting, confusion, no visual symptoms, no family history of migraine and abnormal neurologic exam.
Some measures can help prevent headaches in children. Drinking plenty of water throughout the day, avoiding caffeine, getting enough and regular sleep, eating balanced meals at the proper times, and reducing stress and excess of activities may prevent headaches. Treatments for children are similar to those for adults, however certain medications such as narcotics should not be given to children.
Children who have headaches will not necessarily have headaches as adults. In one study of 100 children with headache, eight years later 44% of those with tension headache and 28% of those with migraines were headache free. In another study of people with chronic daily headache, 75% did not have chronic daily headaches two years later, and 88% did not have chronic daily headaches eight years later.
The prevention and treatment of acephalgic migraine is broadly the same as for classical migraine, but the symptoms are usually less severe than those of classic migraine, so treatment is less likely to be required.
Approximately 64–77% of people have a headache at some point in their lives. During each year, on average, 46–53% of people have headaches. Most of these headaches are not dangerous. Only approximately 1–5% of people who seek emergency treatment for headaches have a serious underlying cause.
More than 90% of headaches are primary headaches. Most of these primary headaches are tension headaches. Most people with tension headaches have "episodic" tension headaches that come and go. Only 3.3% of adults have chronic tension headaches, with headaches for more than 15 days in a month.
Approximately 12–18% of people in the world have migraines. More women than men experience migraines. In Europe and North America, 5–9% of men experience migraines, while 12–25% of women experience migraines.
Cluster headaches are very rare. They affect only 1–3 per thousand people in the world. Cluster headaches affect approximately three times as many men as women.
Episodes of micropsia or macropsia occur in 9% of adolescents.
10-35% of migraine sufferers experience auras, with 88% of these patients experiencing both visual auras (which include micropsia) and neurological auras.
Micropsia seems to be slightly more common in boys than in girls among children who experience migraines.
Approximately 80% of temporal lobe seizures produce auras that may lead to micropsia or macropsia. They are a common feature of simple partial seizures and usually precede complex partial seizures of temporal lobe origin.
Central Serous Chorioretinopathy (CSCR) which can produce micropsia predominantly affects persons between the ages of 20 and 50. Women appear to be affected more than men by a factor of almost 3 to 1.
Most patients have persistent headaches, although about 15% will remit, and 8% will have a relapsing-remitting type. It is not infrequent for NDPH to be an intractable headache disorder that is unresponsive to standard headache therapies.
Acephalgic migraines can occur in individuals of any age. Some individuals, more commonly male, only experience acephalgic migraine, but frequently patients also experience migraine with headache. Generally, the condition is more than twice as likely to occur in females than males. Pediatric acephalgic migraines are listed along with other childhood periodic syndromes by W.A. Al-Twaijri and M.I. Shevell as "migraine equivalents" (although not listed as such in the "International Classification of Headache Disorders"), which can be good predictors of the future development of typical migraines. Individuals who experience acephalgic migraines in childhood are highly likely to develop typical migraines as they grow older. Among women, incidents of acephalgic migraine increase during perimenopause.
Scintillating scotoma is the most common symptom which usually happens concurrently with Expanding Fortification Spectra. Also frequently reported is monocular blindness. Acephalgic migraines typically do not persist more than a few hours and may last for as little as 15 seconds. On rare occasions, they may continue for up to two days.
Acephalgic migraines may resemble transient ischemic attacks or, when longer in duration, stroke. The concurrence of other symptoms such as photophobia and nausea can help in determining the proper diagnosis. Occasionally, patients with acephalgic migraine are misdiagnosed as suffering epilepsy with visual seizures, but the reverse misdiagnosis is more common.
With respect to embolic and hemodynamic causes, this transient monocular visual loss ultimately occurs due to a temporary reduction in retinal artery, ophthalmic artery, or ciliary artery blood flow, leading to a decrease in retinal circulation which, in turn, causes retinal hypoxia. While, most commonly, emboli causing amaurosis fugax are described as coming from an atherosclerotic carotid artery, any emboli arising from vasculature preceding the retinal artery, ophthalmic artery, or ciliary arteries may cause this transient monocular blindness.
- Atherosclerotic carotid artery: Amaurosis fugax may present as a type of transient ischemic attack (TIA), during which an embolus unilaterally obstructs the lumen of the retinal artery or ophthalmic artery, causing a decrease in blood flow to the ipsilateral retina. The most common source of these athero-emboli is an atherosclerotic carotid artery. However, a severely atherosclerotic carotid artery may also cause amaurosis fugax due to its stenosis of blood flow, leading to ischemia when the retina is exposed to bright light. "Unilateral visual loss in bright light may indicate ipsilateral carotid artery occlusive disease and may reflect the inability of borderline circulation to sustain the increased retinal metabolic activity associated with exposure to bright light."
- Atherosclerotic ophthalmic artery: Will present similarly to an atherosclerotic internal carotid artery.
- Cardiac emboli: Thrombotic emboli arising from the heart may also cause luminal obstruction of the retinal, ophthalmic, and/or ciliary arteries, causing decreased blood flow to the ipsilateral retina; examples being those arising due to (1) atrial fibrillation, (2) valvular abnormalities including post-rheumatic valvular disease, mitral valve prolapse, and a bicuspid aortic valve, and (3) atrial myxomas.
- Temporary vasospasm leading to decreased blood flow can be a cause of amaurosis fugax. Generally, these episodes are brief, lasting no longer than five minutes, and have been associated with exercise. These vasospastic episodes are not restricted to young and healthy individuals. "Observations suggest that a systemic hemodynamic challenge provoke[s] the release of vasospastic substance in the retinal vasculature of one eye."
- Giant cell arteritis: Giant cell arteritis can result in granulomatous inflammation within the central retinal artery and posterior ciliary arteries of eye, resulting in partial or complete occlusion, leading to decreased blood flow manifesting as amaurosis fugax. Commonly, amaurosis fugax caused by giant cell arteritis may be associated with jaw claudication and headache. However, it is also not uncommon for these patients to have no other symptoms. One comprehensive review found a two to nineteen percent incidence of amaurosis fugax among these patients.
- Systemic lupus erythematosus
- Periarteritis nodosa
- Eosinophilic vasculitis
- Hyperviscosity syndrome
- Polycythemia
- Hypercoagulability
- Protein C deficiency
- Antiphospholipid antibodies
- Anticardiolipin antibodies
- Lupus anticoagulant
- Thrombocytosis
- Subclavian steal syndrome
- Malignant hypertension can cause ischemia of the optic nerve head leading to transient monocular visual loss.
- Drug abuse-related intravascular emboli
- Iatrogenic: Amaurosis fugax can present as a complication following carotid endarterectomy, carotid angiography, cardiac catheterization, and cardiac bypass.
The prevalence of migraine and vertigo is 1.6 times higher in 200 dizziness clinic patients than in 200 age- and sex-matched controls from an orthopaedic clinic. Among the patients with unclassified or idiopathic vertigo, the prevalence of migraine was shown to be elevated. In another study, migraine patients reported 2.5 times more vertigo and also 2.5 more dizzy spells during headache-free periods than the controls.
MAV may occur at any age with a female:male ratio of between 1.5 and 5:1. Familial occurrence is not uncommon. In most patients, migraine headaches begin earlier in life than MAV with years of headache-free periods before MAV manifests.
In a diary study, the 1-month prevalence of MAV was 16%, frequency of MAV was higher and duration longer on days with headache, and MAV was a risk factor for co-morbid anxiety.
Micropsia can be caused by swelling of the cornea due to infection by the Epstein-Barr virus (EBV) and can therefore present as an initial symptom of EBV mononucleosis, a disease caused by Epstein-Barr virus infection.
There are many causes of blurred vision:
- Use of atropine or other anticholinergics
- Presbyopia—Difficulty focusing on objects that are close. Common in the elderly. (Accommodation tends to decrease with age.)
- Cataracts—Cloudiness over the eye's lens, causing poor night-time vision, halos around lights, and sensitivity to glare. Daytime vision is eventually affected. Common in the elderly.
- Glaucoma—Increased pressure in the eye, causing poor night vision, blind spots, and loss of vision to either side. A major cause of blindness. Glaucoma can happen gradually or suddenly—if sudden, it is a medical emergency.
- Diabetes—Poorly controlled blood sugar can lead to temporary swelling of the lens of the eye, resulting in blurred vision. While it resolves if blood sugar control is reestablished, it is believed repeated occurrences promote the formation of cataracts (which are not temporary).
- Diabetic retinopathy—This complication of diabetes can lead to bleeding into the retina. Another common cause of blindness.
- Hypervitaminosis A—Excess consumption of vitamin A can cause blurred vision.
- Macular degeneration—Loss of central vision, blurred vision (especially while reading), distorted vision (like seeing wavy lines), and colors appearing faded. The most common cause of blindness in people over age 60.
- Eye infection, inflammation, or injury.
- Sjögren's syndrome, a chronic autoimmune inflammatory disease that destroys moisture producing glands, including lacrimal (tear)
- Floaters—Tiny particles drifting across the eye. Although often brief and harmless, they may be a sign of retinal detachment.
- Retinal detachment—Symptoms include floaters, flashes of light across your visual field, or a sensation of a shade or curtain hanging on one side of your visual field.
- Optic neuritis—Inflammation of the optic nerve from infection or multiple sclerosis. You may have pain when you move your eye or touch it through the eyelid.
- Stroke or transient ischemic attack
- Brain tumor
- Toxocara—A parasitic roundworm that can cause blurred vision
- Bleeding into the eye
- Temporal arteritis—Inflammation of an artery in the brain that supplies blood to the optic nerve.
- Migraine headaches—Spots of light, halos, or zigzag patterns are common symptoms prior to the start of the headache. A retinal migraine is when you have only visual symptoms without a headache.
- Myopia—Blurred vision may be a systemic sign of local anaesthetic toxicity
- Reduced blinking—Lid closure that occurs too infrequently often leads to irregularities of the tear film due to prolonged evaporation, thus resulting in disruptions in visual perception.
- Carbon monoxide poisoning—Reduced oxygen delivery can effect many areas of the body including vision. Other symptoms caused by CO include vertigo, hallucination and sensitivity to light.
There are suggestions that visual distortions, such as macropsia, can be associated with cocaine use. Episodes of temporary drug-induced macropsia subside as the chemicals leave the body.
Past research has linked macropsia to migraine. One of these studies was conducted on Japanese adolescents who reported visual episodic illusions with macropsia and showed that illusions are three times more likely to occur in association with migraine. The illusions were most prevalent among girls between the ages of 16 and 18. It is unlikely that macropsia in Japanese adolescents could be due to epileptic seizure since only .3% of Japanese adolescents have epilepsy. No evidence of drugs was found, which eliminates the possibility of the macropsia in the adolescents being drug-induced. It is also unlikely for macropsia in adolescent children to be associated with a serious disease. It is usually the macropsia or other visual disturbance which precedes the painful migrainous headaches. The episodes of macropsia can occur as part of the aura in a migraine. These episodes are often brief, lasting only a few minutes. Adolescents who are deemed to have multiple distortions per episode, such as slow motion vision and macropsia, are even more likely to be sufferers of migraine. The macropsia episodes associated with migraine are typically equivalent to the duration of the aura, which can range from moments to 15 minutes. Non-migrainous headaches are not known to be associated with episodic illusions. Even in the absence of a migraine, a fever or a hypnagocic state can provoke visual illusions, which one might claim to be macropsia. A person with macropsia may fail to see the connection between the migraine and the macropsia, since the conditions may not elicit symptoms at the same time. The pathophysiology of the condition is not fully understood, but the timing of some episodic occurrences with the headaches suggests that there is a connection between macropsia and the vasoconstrictive phase of a migraine. The differences in visual phenomena, such as macropsia with slow motion versus macropsia without slow motion, may result from different areas of the brain being affected by migraine.
The pathophysiology of NDPH is poorly understood. Research points to an immune-mediated, inflammatory process. Cervical joint hypermobility and defective internal jugular venous drainage have also been suggested as causes.
In 1987, Vanast first suggested autoimmune disorder with a persistent viral trigger for CDH (now referred to as NDPH). Post-infectious origins have been approximated to make up anywhere between 30–80% of NDPH patients in different studies. Viruses that have been implicated include Epstein-Barr virus, herpes simplex virus and cytomegalovirus.
Non-specific upper respiratory infections including rhinitis and pharyngitis are most often cited by patients. In one study, 46.5% patients recalled a specific trigger with a respiratory tract illness being the most common. In children, almost half report headache onset during an infection.
A study by Rozen and Swindan in 2007 found elevated levels of tumor necrosis factor alpha, a proinflammatory cytokine, in the cerebrospinal fluid but not the blood of patients with NDPH, chronic migraine, and post-traumatic headaches suggesting inflammation as the cause of the headaches.
NDPH as an inflammatory, post-infectious manifestation indicates a potential meningoencephalitis event in NDPH patients. Tissue specificity is a general feature of post-infectious, immune-mediated conditions, and the meninges are a type of connective tissue membrane. Inflammation of the meninges was first proposed as a possible pathophysiology for migraine in the 1960s and has recently been explored again. This hypothesis is based on meningeal mast cell activation. Reactive arthritis (ReA) is a post-infectious disease entity of synovium/joints with connective tissue membrane (synovial membrane of the joints) which provides a corollary.
NDPH has been reported in Hashimoto's encephalopathy, an immune-mediated type of encephalitis. A mean 5-year retrospective analysis of 53 patients with a history of viral meningitis and 17 patients with a history of bacterial meningitis showed an increased onset of subsequent new onset headache and increased severity of those with prior primary headaches.
Prior to 1990, amaurosis fugax could, "clinically, be divided into four identifiable symptom complexes, each with its underlying pathoetiology: embolic, hypoperfusion, angiospasm, and unknown". In 1990, the causes of amaurosis fugax were better refined by the Amaurosis Fugax Study Group, which has defined five distinct classes of transient monocular blindness based on their supposed cause: embolic, hemodynamic, ocular, neurologic, and idiopathic (or "no cause identified") Concerning the pathology underlying these causes (except idiopathic), "some of the more frequent causes include atheromatous disease of the internal carotid or ophthalmic artery, vasospasm, optic neuropathies, giant cell arteritis, angle-closure glaucoma, increased intracranial pressure, orbital compressive disease, a steal phenomenon, and blood hyperviscosity or hypercoagulability."
The cause is unclear. The underlying mechanism is believed to involve excessive excitability of neurons within the cortex of the brain.
Specifically the right lingual gyrus and left cerebellar anterior lobe of the brain.
Persisting visual snow can feature as a leading addition to a migraine complication called persistent aura without infarction, commonly referred to as persistent migraine aura (PMA). In other clinical sub-forms of migraine headache may be absent and the migraine aura may not take the typical form of the zigzagged fortification spectrum, but manifests with a large variety of focal neurological symptoms.
The role of hallucinogens in of visual snow is not clear. Hallucinogen persisting perception disorder (HPPD), a condition caused by hallucinogenic drug use, is sometimes linked to visual snow, but both the connection of visual snow to HPPD and the cause and prevalence of HPPD is disputed. Most of the evidence for both is generally anecdotal, and subject to spotlight fallacy.
Benign paroxysmal positional vertigo - Migraine is commonly associated with BPPV, the most common vestibular disorder in patients presenting with dizziness. The two may be linked by genetic factors or by vascular damage to the labyrinth.
Ménière's disease - There is an increased prevalence of migraine in patients with Ménière's disease and migraine leads to a greater susceptibility of developing Ménière’s disease. But they can be distinguished. Ménière's disease may go on for days or even years, while migraines typically do not last longer than 24 hours.
Motion sickness is more prevalent in patients with migraine.
Psychiatric syndromes Dizziness and spinning vertigo are the second most common symptom of panic attacks, and they can also present as a symptom of major depression. Migraine is a risk factor for developing major depression and panic disorder and vice versa.
Risk factors for retinal detachment include severe myopia, retinal tears, trauma, family history, as well as complications from cataract surgery.
Retinal detachment can be mitigated in some cases when the warning signs are caught early. The most effective means of prevention and risk reduction is through education of the initial signs, and encouragement for people to seek ophthalmic medical attention if they have symptoms suggestive of a posterior vitreous detachment. Early examination allows detection of retinal tears which can be treated with laser or cryotherapy. This reduces the risk of retinal detachment in those who have tears from around 1:3 to 1:20. For this reason, the governing bodies in some sports require regular eye examination.
Trauma-related cases of retinal detachment can occur in high-impact sports or in high speed sports. Although some recommend avoiding activities that increase pressure in the eye, including diving and skydiving, there is little evidence to support this recommendation, especially in the general population. Nevertheless, ophthalmologists generally advise people with high degrees of myopia to try to avoid exposure to activities that have the potential for trauma, increase pressure on or within the eye itself, or include rapid acceleration and deceleration, such as bungee jumping or roller coaster rides.
Intraocular pressure spikes occur during any activity accompanied by the Valsalva maneuver, including weightlifting. An epidemiological study suggests that heavy manual lifting at work may be associated with increased risk of rhegmatogenous retinal detachment, but this relationship is not strong. In this study, obesity also appeared to increase the risk of retinal detachment. A high Body Mass Index (BMI) and elevated blood pressure have been identified as a risk factor in non-myopic individuals.
Genetic factors promoting local inflammation and photoreceptor degeneration may also be involved in the development of the disease.
Other risk factors include the following:
- Glaucoma
- AIDS
- Cataract surgery
- Diabetic retinopathy
- Eclampsia
- Family history of retinal detachment
- Homocysteinuria
- Malignant hypertension
- Metastatic cancer, which spreads to the eye (eye cancer)
- Retinoblastoma
- Severe myopia
- Smoking and passive smoking
- Stickler syndrome
- Von Hippel-Lindau disease
Optic pits occur equally between men and women. They are seen in roughly 1 in 10,000 eyes, and approximately 85% of optic pits are found to be unilateral (i.e. in only one eye of any affected individual). About 70% are found on the temporal side (or lateral one-half) of the optic disc. Another 20% are found centrally, while the remaining pits are located either superiorly (in the upper one-half), inferiorly (in the lower one-half), or nasally (in the medial one-half towards the nose).
There are also non-familial cases of hemiplegic migraine, termed sporadic hemiplegic migraine. These cases seem to have the same causes as the familial cases and represent de novo mutations. Sporadic cases are also clinically identical to familial cases with the exception of a lack of family history of attacks.