Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
As one gets older, pockets of fluid can develop in the vitreous. When these pockets develop near the back of the eye, the vitreous can pull away from the retina and possibly tear it. Posterior vitreous detachment accounts for 3.7–11.7% of vitreous hemorrhage cases.
A tear in the retina can allow fluids from the eye to leak in behind the retina, which causes retinal detachment. When this occurs, blood from the retinal blood vessels can bleed into the vitreous. Retinal tear accounts for 11.4–44% of vitreous hemorrhage cases.
Studies have identified the following abnormalities as risk factors for the development of BRVO:
- hypertension
- cardiovascular disease
- obesity
- glaucoma
Diabetes mellitus was not a major independent risk factor.
Retinal haemorrhages commonly occur in high attitude climbers, most likely due to the effects of systemic hypoxia on the eye. Risk is correlated with the maximum altitude reached, duration of exposure to high altitude conditions, and climb rate.
Risk factors for retinal detachment include severe myopia, retinal tears, trauma, family history, as well as complications from cataract surgery.
Retinal detachment can be mitigated in some cases when the warning signs are caught early. The most effective means of prevention and risk reduction is through education of the initial signs, and encouragement for people to seek ophthalmic medical attention if they have symptoms suggestive of a posterior vitreous detachment. Early examination allows detection of retinal tears which can be treated with laser or cryotherapy. This reduces the risk of retinal detachment in those who have tears from around 1:3 to 1:20. For this reason, the governing bodies in some sports require regular eye examination.
Trauma-related cases of retinal detachment can occur in high-impact sports or in high speed sports. Although some recommend avoiding activities that increase pressure in the eye, including diving and skydiving, there is little evidence to support this recommendation, especially in the general population. Nevertheless, ophthalmologists generally advise people with high degrees of myopia to try to avoid exposure to activities that have the potential for trauma, increase pressure on or within the eye itself, or include rapid acceleration and deceleration, such as bungee jumping or roller coaster rides.
Intraocular pressure spikes occur during any activity accompanied by the Valsalva maneuver, including weightlifting. An epidemiological study suggests that heavy manual lifting at work may be associated with increased risk of rhegmatogenous retinal detachment, but this relationship is not strong. In this study, obesity also appeared to increase the risk of retinal detachment. A high Body Mass Index (BMI) and elevated blood pressure have been identified as a risk factor in non-myopic individuals.
Genetic factors promoting local inflammation and photoreceptor degeneration may also be involved in the development of the disease.
Other risk factors include the following:
- Glaucoma
- AIDS
- Cataract surgery
- Diabetic retinopathy
- Eclampsia
- Family history of retinal detachment
- Homocysteinuria
- Malignant hypertension
- Metastatic cancer, which spreads to the eye (eye cancer)
- Retinoblastoma
- Severe myopia
- Smoking and passive smoking
- Stickler syndrome
- Von Hippel-Lindau disease
In general, BRVO has a good prognosis: after 1 year 50–60% of eyes have been reported to have a final VA of 20/40 or better even without any treatment. With time the dramatic picture of an acute BRVO becomes more subtle, hemorrhages fade so that the retina can look almost normal. Collateral vessels develop to help drain the affected area.
Retinal hemorrhage is a disorder of the eye in which bleeding occurs into the light sensitive tissue on the back wall of the eye. A retinal hemorrhage can be caused by hypertension, retinal vein occlusion (a blockage of a retinal vein), or diabetes mellitus (which causes small fragile blood vessels to form, which are easily damaged). Retinal hemorrhages can also occur due to shaking, particularly in young infants (shaken baby syndrome) or from severe blows to the head.
Retinal hemorrhages that take place outside the macula can go undetected for many years, and may sometimes only be picked up when the eye is examined in detail by ophthalmoscopy, fundus photography, or a dilated fundus exam. However, some retinal hemorrhages can cause severe impairment of vision. They may occur in connection with posterior vitreous detachment or retinal detachment.
The incidence of retinal detachment in otherwise normal eyes is around 5 new cases in 100,000 persons per year. Detachment is more frequent in middle-aged or elderly populations, with rates of around 20 in 100,000 per year. The lifetime risk in normal individuals is about 1 in 300. Asymptomatic retinal breaks are present in about 6% of eyes in both clinical and autopsy studies.
- Retinal detachment is more common in people with severe myopia (above 5–6 diopters), in whom the retina is more thinly stretched. In such patients, lifetime risk rises to 1 in 20. About two-thirds of cases of retinal detachment occur in myopics. Myopic retinal detachment patients tend to be younger than non-myopic ones.
- Retinal detachment is more frequent after surgery for cataracts. The estimated long-term prevalence of retinal detachment after cataract surgery is in the range of 5 to 16 per 1000 cataract operations, but is much higher in patients who are highly myopic, with a prevalence of up to 7% being reported in one study. One study found that the probability of experiencing retinal detachment within 10 years of cataract surgery may be about 5 times higher than in the absence of treatment.
- Tractional retinal detachments can also occur in patients with proliferative diabetic retinopathy or those with proliferative retinopathy of sickle cell disease. In proliferative retinopathy, abnormal blood vessels (neovascularization) grow within the retina and extend into the vitreous. In advanced disease, the vessels can pull the retina away from the back wall of the eye, leading to tractional retinal detachment.
Although retinal detachment usually occurs in just one eye, there is a 15% chance of it developing in the other eye, and this risk increases to 25–30% in patients who have had a retinal detachment and cataracts extracted from both eyes.
The two most common causes of retinopathy include diabetic retinopathy and retinopathy of prematurity. Diabetic retinopathy affects about 5 million people and retinopathy of prematurity affect about 50,000 premature infants each year worldwide. Hypertensive retinopathy is the next most common cause affecting anywhere from 3 to 14% of all non-diabetic adults.
Severe ipsilateral or bilateral carotid artery stenosis or occlusion is the most common cause of ocular ischemic syndrome. The syndrome has been associated with occlusion of the common carotid artery, internal carotid artery, and less frequently the external carotid artery. Other causes include:
- Takayasu's arteritis
- Giant cell arteritis
- Severe ophthalmic artery occlusion, due to thromboembolism.
- Surgical interruption of anterior ciliary blood vessels supplying the eye, particularly during extensive strabismus surgery on 3 or more rectus muscles, leading to an anterior segment ischemic syndrome.
Genetic mutations are rare causes of certain retinopathies and are usually X-linked including "NDP" family of genes causing Norrie Disease, FEVR, and Coats disease among others. There is emerging evidence that there may be a genetic predisposition in patients who develop retinopathy of prematurity and diabetic retinopathy. Trauma, especially to the head, and several diseases may cause Purtscher's retinopathy.
Predisposing factors for Postoperative PVR are preoperative PVR, aphakia, high levels of vitreous proteins, duration of retinal detachment before corrective surgery, the size of the retinal hole or tear, intra-ocular inflammation, vitreous hemorrhage, and trauma to the eye. An equation to calculate the patient's risk for acquiring PVR is:
1 is added if the risk factor is present and 0 if the risk factor is absent. A patient is at a high risk for developing PVR is the PVR score is >6.33.
If carotid occlusive disease results in ophthalmic artery occlusion, general ocular ischemia may result in retinal neovascularization, rubeosis iridis, cells and flare, iris necrosis, and cataract. The condition leads to neovascularization in various eye tissues due to the ischemia. The eye pressure may become high due to associated neovascular glaucoma. An ischemic optic neuropathy may eventually occur.
This ocular pathology was first described by Iwanoff in 1865, and it has been shown to occur in about 7% of the population. It can occur more frequently in the older population with postmortem studies showing it in 2% of those aged 50 years and 20% in those aged 75 years.
No complications are encountered in most patients with lattice degeneration, although in young myopes, retinal detachment can occur. There are documented cases with macula-off retinal detachment in patients with asymptomatic lattice degeneration. Partial or complete vision loss almost always occurs in such cases. Currently there is no prevention or cure for lattice degeneration.
Risk factors for CRAO include the following: being between 60 and 65 years of age, being over the age of 40, male gender, hypertension, caucasian, smoking and diabetes mellitus. Additional risk factors include endocarditis, atrial myxoma, inflammatory diseases of the blood vessels, and predisposition to forming blood clots.
Familial transmission is now recognized in a small proportion of people with MacTel type 2; however, the nature of any related genetic defect or defects remains elusive. The MacTel genetic study team hopes that exome analysis in the affected population and relatives may be more successful in identifying related variants.
There is no good evidence for any preventive actions, since it appears this is a natural response to aging changes in the vitreous. Posterior vitreous detachment (PVD) has been estimated to occur in over 75 per cent of the population over age 65, that PVD is essentially a harmless condition (although with some disturbing symptoms), and that it does not normally threaten sight. However, since epiretinal membrane appears to be a protective response to PVD, where inflammation, exudative fluid, and scar tissue is formed, it is possible that NSAIDs may reduce the inflammation response. Usually there are flashing light experiences and the emergence of floaters in the eye that herald changes in the vitreous before the epiretinal membrane forms g
Optic pits occur equally between men and women. They are seen in roughly 1 in 10,000 eyes, and approximately 85% of optic pits are found to be unilateral (i.e. in only one eye of any affected individual). About 70% are found on the temporal side (or lateral one-half) of the optic disc. Another 20% are found centrally, while the remaining pits are located either superiorly (in the upper one-half), inferiorly (in the lower one-half), or nasally (in the medial one-half towards the nose).
Risk factors include:
- Hypertension
- Elevated lipid levels
- cigarette smoking
- Diabetes
The most common cause for CRAO is carotid artery atherosclerosis. In patients of 70 years of age and older, giant cell arteritis is more likely to be the cause than in younger patients. Other causes can include dissecting aneurysms and arterial spasms.
The central retinal vein is the venous equivalent of the central retinal artery and, like that blood vessel, it can suffer from occlusion (central retinal vein occlusion, also CRVO), similar to that seen in ocular ischemic syndrome. Since the central retinal artery and vein are the sole source of blood supply and drainage for the retina, such occlusion can lead to severe damage to the retina and blindness, due to ischemia (restriction in blood supply) and edema (swelling).
It can also cause glaucoma.
Nonischemic CRVO is the milder form of the disease. It may progress to the more severe ischemic type.
No particular risk factors have been conclusively identified; however, there have been a few reports that demonstrate an autosomal dominant pattern of inheritance in some families. Therefore, a family history of optic pits may be a possible risk factor.
Although a variety of complex classification schemes are described in the literature, there are essentially two forms of macular telangiectasia: type 1 and type 2. Type 1 is typically unilateral and occurs almost exclusively in males after the age of 40.
Type 2 is mostly bilateral, occurs equally in males and females.
The vitreous (Latin for "glassy") humor is a gel which fills the eye behind the lens. Between it and the retina is the vitreous membrane. With age the vitreous humor changes, shrinking and developing pockets of liquefaction, similar to the way a gelatin dessert shrinks and detaches from the edge of a pan. At some stage the vitreous membrane may peel away from the retina. This is usually a sudden event, but it may also occur slowly over months.
Age and refractive error play a role in determining the onset of PVD in a healthy person. PVD is rare in emmetropic people under the age of 40 years, and increases with age to 86% in the 90s. Several studies have found a broad range of incidence of PVD, from 20% of autopsy cases to 57% in a more elderly population of patients (average age was 83.4 years).
People with myopia (nearsightedness) greater than 6 diopters are at higher risk of PVD at all ages.
Posterior vitreous detachment does not directly threaten vision. Even so, it is of increasing interest because the interaction between the vitreous body and the retina might play a decisive role in the development of major pathologic vitreoretinal conditions, such as epiretinal membrane.
PVD may also occur in cases of cataract surgery, within weeks or months of the surgery.
The vitreous membrane is more firmly attached to the retina anteriorly, at a structure called the vitreous base. The membrane does not normally detach from the vitreous base, although it can be detached with extreme trauma. However, the vitreous base may have an irregular posterior edge. When the edge is irregular, the forces of the vitreous membrane peeling off the retina can become concentrated at small posterior extensions of the vitreous base. Similarly, in some people with retinal lesions such as lattice retinal degeneration or chorio-retinal scars, the vitreous membrane may be abnormally adherent to the retina. If enough traction occurs the retina may tear at these points. If there are only small point tears, these can allow glial cells to enter the vitreous humor and proliferate to create a thin epiretinal membrane that distorts vision. In more severe cases, vitreous fluid may seep under the tear, separating the retina from the back of the eye, creating a retinal detachment. Trauma can be any form from a blunt force trauma to the face such as a boxer's punch or even in some cases has been known to be from extremely vigorous coughing or blowing of the nose.