Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Hypersensitivity pneumonitis may also be called many different names, based on the provoking antigen. These include:
Of these types, Farmer's Lung and Bird-Breeder's Lung are the most common. "Studies document 8-540 cases per 100,000 persons per year for farmers and 6000-21,000 cases per 100,000 persons per year for pigeon breeders. High attack rates are documented in sporadic outbreaks. Prevalence varies by region, climate, and farming practices. HP affects 0.4–7% of the farming population. Reported prevalence among bird fanciers is estimated to be 20-20,000 cases per 100,000 persons at risk."
The best treatment is to avoid the provoking allergen, as chronic exposure can cause permanent damage. Corticosteroids such as prednisolone may help to control symptoms but may produce side-effects.
At present, over 400 workplace substances have been identified as having asthmagenic or allergenic properties. Their existence and magnitude vary by region and industry and can include diisocyanates, acid anhydrides, plicatic acid, and platinum salts (all low molecular weight agents), and animal protein, enzymes, wheat, and latex (high-molecular weight agents). For example, in France the industries most affected are bakeries and cake-shops, automobile industry and hairdressers, whereas in Canada the principal cause is wood dust, followed by isocyanates. Furthermore, the most common cause of occupational asthma in the workplace are isocyanates. Isocyanates are used in the production of motor vehicles and in the application of orthopaedic polyurethane and fibreglass casts.
The occupations most at risk are: adhesive handlers (e.g. acrylate), animal handlers and veterinarians (animal proteins), bakers and millers (cereal grains), carpet makers (gums), electronics workers (soldering resin), forest workers, carpenters and cabinetmakers (wood dust), hairdressers (e.g. persulfate), health care workers (latex and chemicals such as glutaraldehyde), janitors and cleaning staff (e.g. chloramine-T), pharmaceutical workers (drugs, enzymes), seafood processors, shellac handlers (e.g. amines), solderers and refiners (metals), spray painters, insulation installers, plastics and foam industry workers (e.g. diisocyanates), textile workers (dyes) and users of plastics and epoxy resins (e.g. anhydrides)
The following tables show occupations that are known to be at risk for occupational asthma, the main reference for these is the Canadian Centre for Occupational Health and Safety.
Prevention of occupational asthma can be accomplished through better education of workers, management, unions and medical professionals. This will enable them to identify the risk factors and put in place preventive measures, including respiratory protection and exposure limits.
FLD affects approximately .5%-3% of farmers. In some regions of the world such as Asia, the infection rate is more around 6%.
The only cause of Farmer’s lung is repeated exposure to tiny microorganisms which inhabit moldy hay. They are inhaled and often provoke the creation of IgE antibodies that circulate in the bloodstream, these types of immune response are most often initiated by exposure to thermophilic actinomycetes (most commonly "Saccharopolyspora rectivirgula"), which generates IgG-type antibodies. Following a subsequent exposure, IgG antibodies combine with the inhaled allergen to form immune complexes in the walls of the alveoli in the lungs. This causes fluid, protein, and cells to accumulate in the alveolar wall which slows blood-gas interchange and compromises the function of the lung. After multiple exposures, it takes less and less of the antigens to set off the reaction in the lung. The most prominent antigens are thermophilic actinomycetes and fungi.
The following are precautionary measures that can be taken to avoid the spread of bagassosis:
1. Dust control-prevention /suppression of dust such as wet process, enclosed apparatus, exhaust ventilation etc. should be used
2. Personal protection- masks/ respirators
3. Medical control- initial medical examination & periodical checkups of workers
4. Bagasse control- keep moisture content above 20% and spray bagasse with 2% propionic acid
There are limited national and international studies into the burden of ABPA, made more difficult by a non-standardized diagnostic criteria. Estimates of between 0.5–3.5% have been made for ABPA burden in asthma, and 1–17.7% in CF. Five national cohorts, detecting ABPA prevalence in asthma (based on GINA estimates), were used in a recent meta-analysis to produce an estimate of the global burden of ABPA complicating asthma. From 193 million asthma sufferers worldwide, ABPA prevalence in asthma is estimated between the extremes of 1.35–6.77 million sufferers, using 0.7–3.5% attrition rates. A compromise at 2.5% attrition has also been proposed, placing global burden at around 4.8 million people affected. The Eastern Mediterranean region had the lowest estimated prevalence, with a predicted case burden of 351,000; collectively, the Americas had the highest predicted burden at 1,461,000 cases. These are likely underestimates of total prevalence, given the exclusion of CF patients and children from the study, as well as diagnostic testing being limited in less developed regions.
BFL symptoms improve in the absence of the bird proteins which caused the disease. Therefore, it is advisable to remove all birds, bedding and pillows containing feathers from the house as well as washing all soft furnishings, walls, ceilings and furniture. Certain small mammals kept as pets have the same or similar proteins in their fur and feces and so should be removed. Peak flow measurements will indicate a lung condition however a spirometric test on lung capacity and patients ability to move air in and out of the lungs plus in more advanced cases an X-ray test or CT scan is available to confirm whether someone has the disease or not. Steroid inhalers similar to those used for asthma are effective or in cases where the patient finds inhaling difficult high dosages of steroids combined with bone density protecting drugs are used to treat a person with BFL, reducing the inflammation and hopefully preventing scarring. Recovery varies from patient to patient depending on what stage the condition was at when the patient consulted the doctor, the speed of diagnosis and application of the appropriate treatment to prevent residual damage to the lungs and many make a full recovery. However, BFL may reoccur when in contact with birds or other allergens.
The rate of BPD varies among institutions, which may reflect neonatal risk factors, care practices (e.g., target levels for acceptable oxygen saturation), and differences in the clinical definitions of BPD.
Allergic bronchopulmonary aspergillosis (ABPA) is a condition characterised by an exaggerated response of the immune system (a hypersensitivity response) to the fungus "Aspergillus" (most commonly "Aspergillus fumigatus"). It occurs most often in patients with asthma or cystic fibrosis. "Aspergillus" spores are ubiquitous in soil and are commonly found in the sputum of healthy individuals. "A. fumigatus" is responsible for a spectrum of lung diseases known as aspergilloses.
ABPA causes airway inflammation, leading to bronchiectasis—a condition marked by abnormal dilation of the airways. Left untreated, the immune system and fungal spores can damage sensitive lung tissues and lead to scarring.
The exact criteria for the diagnosis of ABPA are not agreed upon. Chest X-rays and CT scans, raised blood levels of IgE and eosinophils, immunological tests for "Aspergillus" together with sputum staining and sputum cultures can be useful. Treatment consists of corticosteroids and antifungal medications.
Bagassosis has been shown to be due to a thermophilic actinomycetes for which the name thermoactinomycetes sacchari was suggested.
Bird fancier's lung is a type of hypersensitivity pneumonitis caused by bird droppings. The lungs become inflamed with granuloma formation.
Bird fancier's lung (BFL), also called "bird-breeder's lung" and "pigeon-breeder's lung", is a subset of hypersensitivity pneumonitis (HP). This disease is caused by the exposure to avian proteins present in the dry dust of the droppings and sometimes in the feathers of a variety of birds. Birds such as pigeons, parakeets, cockatiels, shell parakeets (budgerigars), parrots, turtle doves, turkeys and chickens have been implicated.
People who work with birds or own many birds are at risk. Bird hobbyists and pet store workers may also be at risk.
The disorder is thought to be caused by an anomaly in the arachidonic acid metabolizing cascade which leads to increased production of pro-inflammatory cysteinyl leukotrienes, a series of chemicals involved in the body's inflammatory response. When medications like NSAIDs or aspirin block the COX-1 enzyme, production of thromboxane and some anti-inflammatory prostaglandins is decreased, and in patients with aspirin-induced asthma this results in the overproduction of pro-inflammatory leukotrienes to causes severe exacerbations of asthma and allergy-like symptoms. The underlying cause of the disorder is not fully understood, but there have been several important findings:
- Abnormally low levels of prostaglandin E (PGE), which is protective for the lungs, has been found in patients with aspirin-induced asthma and may worsen their lung inflammation.
- In addition to the overproduction of cystinyl leukotrienes, overproduction of 15-lipoxygenase-derived arachidonic acid metabolites viz., 15-hydroxyicosatetraenoic acid and eoxins by the eosinophils isolated from the blood of individuals with AERD; certain of these products may help promote the inflammatory response.
- Overexpression of both the cysteinyl leukotriene receptor 1 and the leukotriene C synthase enzyme has been shown in respiratory tissue from patients with aspirin-induced asthma, which likely relates to the increased response to leukotrienes and increased production of leukotrienes seen in the disorder.
- The attachment of platelets to certain leukocytes in the blood of patients with aspirin-sensitive asthma has also been shown to contribute to the overproduction of leukotrienes.
- There may be a relationship between aspirin-induced asthma and "TBX21", "PTGER2", and "LTC4S".
- Eosinophils isolated from the blood of aspirin-induced asthma subjects (as well as severe asthmatic patients) greatly overproduce 15-hydroxyicosatetraenoic acid and eoxin C4 when challenged with arachidonic acid or calcium ionophore A23187, compared to the eosinophils taken from normal or mildly asthmatic subjects; aspirin treatment of eosinophils from aspirin intolerant subjects causes the cells to mount a further increase in eoxin production. These results suggest that 15-lipoxygenase and certain of its metabolites, perhaps eoxin C4, as contributing to aspirin-induced asthma in a fashion similar to 5-lipoxygenase and its leukotriene metabolites.
Some people have reported relief of symptoms by following a low-salicylate diet such as the Feingold diet. Aspirin is quickly converted in the body to salicylic acid, also known as 2-Hydroxybenzoic acid. Sommer "et al." reported a multi-center prospective randomized cross-over trial with 30 patients following a low-salicylate diet for 6 weeks. This study demonstrated a clinically significant decrease in both subjective and objective scoring of severity of disease, but made note of the challenge for patients in following what is a fairly stringent diet.
A diet low in omega-6 oils (precursors of arachidonic acid), and high in omega-3 oils, may also help. In a small study, aspirin-sensitive asthma patients taking 10 grams of fish oil daily reported relief of most symptoms after six weeks, however symptoms returned if the supplement was stopped.
The clinical course of IPF can be unpredictable. IPF progression is associated with an estimated median survival time of 2 to 5 years following diagnosis.
The 5-year survival for IPF ranges between 20–40%, a mortality rate higher than that of a number of malignancies, including colon cancer, multiple myeloma and bladder cancer.
Recently a multidimensional index and staging system has been proposed to predict mortality in IPF. The name of the index is GAP and is based on gender [G], age [A], and two lung physiology variables [P] (FVC and DL that are commonly measured in clinical practice to predict mortality in IPF. The highest stage of GAP (stage III) has been found to be associated with a 39% risk of mortality at 1 year. This model has also been evaluated in IPF and other ILDs and shown good performance in predicting mortality in all main ILD subtypes. A modified ILD-GAP Index has been developed for application across ILD subtypes to provide disease-specific survival estimates. In IPF patients, the overall mortality at 5 years rate is high but the annual rate of all-cause mortality in patients with mild to moderate lung impairment is relatively low. This is the reason why change in lung function (FVC) is usually measured in 1-year clinical trials of IPF treatments rather than survival.
In addition to clinical and physiological parameters to predict how rapidly patients with IPF might progress, genetic and molecular features are also associated with IPF mortality. For example, it has been shown that IPF patients who have a specific genotype in the mucin MUC5B gene polymorphism (see above) experience slower decline in FVC and significantly improved survival. Even if such data are interesting from a scientific point of view, the application in the clinical routine of a prognostic model based on specific genotypes is still not possible.
The cause of IPF is unknown but certain environmental factors and exposures have been shown to increase the risk of getting IPF. Cigarette smoking is the best recognized and most accepted risk factor for IPF, and increases the risk of IPF by about twofold. Other environmental and occupation exposures such as exposure to metal dust, wood dust, coal dust, silica, stone dust, biologic dusts coming from hay dust or mold spores or other agricultural products, and occupations related to farming/livestock have also been shown to increase the risk for IPF. There is some evidence that viral infections may be associated with idiopathic pulmonary fibrosis and other fibrotic lung diseases.
ILD may be classified according to the cause. One method of classification is as follows:
1. Inhaled substances
- Inorganic
- Silicosis
- Asbestosis
- Berylliosis
- printing workers (eg. carbon bblack, ink mist)
- Organic
- Hypersensitivity pneumonitis
2. Drug-induced
- Antibiotics
- Chemotherapeutic drugs
- Antiarrhythmic agents
3. Connective tissue and Autoimmune diseases
- Rheumatoid arthritis
- Systemic lupus erythematosus
- Systemic sclerosis
- Polymyositis
- Dermatomyositis
4. Infection
- Atypical pneumonia
- Pneumocystis pneumonia (PCP)
- Tuberculosis
- "Chlamydia" trachomatis
- Respiratory Syncytial Virus
5. Idiopathic
- Sarcoidosis
- Idiopathic pulmonary fibrosis
- Hamman-Rich syndrome
- Antisynthetase syndrome
6. Malignancy
- Lymphangitic carcinomatosis
7. Predominantly in children
- Diffuse developmental disorders
- Growth abnormalities deficient alveolarisation
- Infant conditions of undefined cause
- ILD related to alveolar surfactant region
Regardless of cause, UIP is relentlessly progressive, usually leading to respiratory failure and death without a lung transplant. Some patients do well for a prolonged period of time, but then deteriorate rapidly because of a superimposed acute illness (so-called "accelerated UIP"). The outlook for long-term survival is poor. In most studies, the median survival is 3 to 4 years. Patients with UIP in the setting of rheumatoid arthritis have a slightly better prognosis than UIP without a known cause (IPF).
Pulmonary fibrosis may be a secondary effect of other diseases. Most of these are classified as interstitial lung diseases. Examples include autoimmune disorders, viral infections and bacterial infection like tuberculosis which may cause fibrotic changes in both lungs upper or lower lobes and other microscopic injuries to the lung. However, pulmonary fibrosis can also appear without any known cause. In this case, it is termed "idiopathic". Most idiopathic cases are diagnosed as "idiopathic pulmonary fibrosis". This is a diagnosis of exclusion of a characteristic set of histologic/pathologic features known as usual interstitial pneumonia (UIP). In either case, there is a growing body of evidence which points to a genetic predisposition in a subset of patients. For example, a mutation in surfactant protein C (SP-C) has been found to exist in some families with a history of pulmonary fibrosis.
Diseases and conditions that may cause pulmonary fibrosis as a secondary effect include:
- Inhalation of environmental and occupational pollutants, such as metals in asbestosis, silicosis and exposure to certain gases. Coal miners, ship workers and sand blasters among others are at higher risk.
- Hypersensitivity pneumonitis, most often resulting from inhaling dust contaminated with bacterial, fungal, or animal products.
- Cigarette smoking can increase the risk or make the illness worse.
- Some typical connective tissue diseases such as rheumatoid arthritis, SLE and scleroderma
- Other diseases that involve connective tissue, such as sarcoidosis and granulomatosis with polyangiitis.
- Infections
- Certain medications, e.g. amiodarone, bleomycin (pingyangmycin), busulfan, methotrexate, apomorphine, and nitrofurantoin
- Radiation therapy to the chest
Some examples:
- Allergic asthma
- Allergic conjunctivitis
- Allergic rhinitis ("hay fever")
- Anaphylaxis
- Angioedema
- Urticaria (hives)
- Eosinophilia
- Penicillin allergy
- Cephalosporin allergy
- Food allergy
- Sweet itch
Treatment usually involves adrenaline (epinephrine), antihistamines, and corticosteroids.
If the entire body is involved, then anaphylaxis can take place, which is an acute, systemic reaction that can prove fatal.
Lycoperdonosis is a respiratory disease caused by the inhalation of large amounts of spores from mature puffballs. It is classified as a hypersensitivity pneumonitis (also called extrinsic allergic alveolitis)—an inflammation of the alveoli within the lung caused by hypersensitivity to inhaled natural dusts. It is one of several types of hypersensitivity pneumonitis caused by different agents that have similar clinical features. Typical progression of the disease includes symptoms of a cold hours after spore inhalation, followed by nausea, rapid pulse, crepitant rales (a sound like that made by rubbing hairs between the fingers, heard at the end of inhalation), and dyspnea. Chest radiographs reveal the presence of nodules in the lungs. The early symptoms presented in combination with pulmonary abnormalities apparent on chest radiographs may lead to misdiagnosis of the disease as tuberculosis, histiocytosis, or pneumonia caused by "Pneumocystis carinii". Lycoperdonosis is generally treated with corticosteroids, which decrease the inflammatory response; these are sometimes given in conjunction with antimicrobials.
The disease was first described in the medical literature in 1967 by R.D. Strand and colleagues in the "New England Journal of Medicine". In 1976, a 4-year-old was reported developing the disease in Norway after purposely inhaling a large quantity of "Lycoperdon" spores to stop a nosebleed. "Lycoperdon" species are sometimes used in folk medicine in the belief that their spores have haemostatic properties. A 1997 case report discussed several instances of teenagers inhaling the spores. In one severe case, the individual inhaled enough spores so as to be able to blow them out of his mouth. He underwent bronchoscopy and then had to be on life support before recovering in about four weeks. In another instance, a teenager spent 18 days in a coma, had portions of his lung removed, and suffered severe liver damage. In Wisconsin, eight teenagers who inhaled spores at a party presented clinical symptoms such as cough, fever, shortness of breath, myalgia, and fatigue within a week. Five of the eight required hospitalization; of these, two required intubation to assist in breathing. The disease is rare, possibly because of the large quantity of spores that need to be inhaled for clinical effects to occur. Lycoperdonosis also occurs in dogs; in the few reported cases, the animals had been playing or digging in areas known to contain puffballs. Known species of puffballs implicated in the etiology of the published cases include the widespread "Lycoperdon perlatum" (the "devil's snuff-box", "L. gemmatum") and "Calvatia gigantea", both of the Lycoperdaceae family.
There is evidence to show that steroids given to babies less than 8 days old can prevent bronchopulmonary dysplasia. However, the risks of treatment may outweigh the benefits.
It is unclear if starting steroids more than 7 days after birth is harmful or beneficial. It is thus recommended that they only be used in those who cannot be taken off of a ventilator.
In the case of infectious rhinitis, vaccination against influenza viruses, adenoviruses, measles, rubella, "Streptococcus pneumoniae", "Haemophilus influenzae", diphtheria, "Bacillus anthracis", and "Bordetella pertussis" may help prevent it.