Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Many people of East Asian descent are prone to developing angle closure glaucoma due to shallower anterior chamber depths, with the majority of cases of glaucoma in this population consisting of some form of angle closure. Higher rates of glaucoma have also been reported for Inuit populations, compared to white populations, in Canada and Greenland.
No clear evidence indicates vitamin deficiencies cause glaucoma in humans. It follows, then, that oral vitamin supplementation is not a recommended treatment for glaucoma. Caffeine increases intraocular pressure in those with glaucoma, but does not appear to affect normal individuals.
Of these, cataract is responsible for >65%, or more than 22 million cases of blindness, and glaucoma is responsible for 6 million cases.
Cataracts: is the congenital and pediatric pathology that describes the greying or opacity of the crystalline lens, which is most commonly caused by intrauterine infections, metabolic disorders, and genetically transmitted syndromes. Cataracts are the leading cause of child and adult blindness that doubles in prevalence with every ten years after the age of 40. Consequently, today cataracts are more common among adults than in children. That is, people face higher chances of developing cataracts as they age. Nonetheless, cataracts tend to have a greater financial and emotional toll upon children as they must undergo expensive diagnosis, long term rehabilitation, and visual assistance. Also, according to the Saudi Journal for Health Sciences, sometimes patients experience irreversible amblyopia after pediatric cataract surgery because the cataracts prevented the normal maturation of vision prior to operation. Despite the great progress in treatment, cataracts remain a global problem in both economically developed and developing countries. At present, with the variant outcomes as well as the unequal access to cataract surgery, the best way to reduce the risk of developing cataracts is to avoid smoking and extensive exposure to sun light (i.e. UV-B rays).
The most common causes of visual impairment globally in 2010 were:
1. Refractive error (42%)
2. cataract (33%)
3. glaucoma (2%)
4. age related macular degeneration (1%)
5. corneal opacification (1%)
6. diabetic retinopathy (1%)
7. childhood blindness
8. trachoma (1%)
9. undetermined (18%)
The most common causes of blindness in 2010 were:
1. cataracts (51%)
2. glaucoma (8%)
3. age related macular degeneration (5%)
4. corneal opacification (4%)
5. childhood blindness (4%)
6. refractive errors (3%)
7. trachoma (3%)
8. diabetic retinopathy (1%)
9. undetermined (21%)
About 90% of people who are visually impaired live in the developing world. Age-related macular degeneration, glaucoma, and diabetic retinopathy are the leading causes of blindness in the developed world.
Among working age adults who are newly blind in England and Wales the most common causes in 2010 were:
1. Hereditary retinal disorders (20.2%)
2. Diabetic retinopathy (14.4%)
3. Optic atrophy (14.1%)
4. Glaucoma (5.9%)
5. Congenital abnormalities (5.1%)
6. Disorders of the visual cortex (4.1%)
7. Cerebrovascular disease (3.2%)
8. Degeneration of the macula and posterior pole (3.0%)
9. Myopia (2.8%)
10. Corneal disorders (2.6%)
11. Malignant neoplasms of the brain and nervous system (1.5%)
12. Retinal detachment (1.4%)
Scientists are studying different populations and relationships to try to learn more about the disease. They have found associations with different groups but it is not yet clear what the underlying factors are and how they affect different peoples around the world.
- Glaucoma patients. While PEX and glaucoma are believed to be related, there are cases of persons with PEX without glaucoma, and persons with glaucoma without PEX. Generally, a person with PEX is considered as having a risk of developing glaucoma, and vice versa. One study suggested that the PEX was present in 12% of glaucoma patients. Another found that PEX was present in 6% of an "open-angle glaucoma" group. Pseudoexfoliation syndrome is considered to be the most common of identifiable causes of glaucoma. If PEX is diagnosed without glaucoma, there is a high risk of a patient subsequently developing glaucoma.
- Country and region. Prevalence of PEX varies by geography. In Europe, differing levels of PEX were found; 5% in England, 6% in Norway, 4% in Germany, 1% in Greece, and 6% in France. One contrary report suggested that levels of PEX were higher among Greek people. One study of a county in Minnesota found that the prevalence of PEX was 25.9 cases per 100,000 people. It is reportedly high in northern European countries such as Norway, Sweden and Finland, as well as among the Sami people of northern Europe, and high among Arabic populations, but relatively rare among African Americans and Eskimos. In southern Africa, prevalence was found to be 19% of patients in a glaucoma clinic attending to persons of the Bantu tribes.
- Race. It varies considerably according to race.
- Gender. It affects women more than men. One report was that women were three times more likely than men to develop PEX.
- Age. Older persons are more likely to develop PEX. And persons younger than 50 are highly unlikely to have PEX. A study in Norway found that the prevalence of PEX of persons aged 50–59 was 0.4% while it was 7.9% for persons aged 80–89 years. If a person is going to develop PEX, the average age in which this will happen is between 69 and 75 years, according to the Norwegian study. A second corroborating report suggested that it happens primarily to people 70 and older. While older people are more likely to develop PEX, it is not seen as a "normal" part of aging.
- Other diseases. Sometimes PEX is associated with the development of medical problems other than merely glaucoma. There are conflicting reports about whether PEX is associated with problems of the heart or brain; one study suggested no correlations while other studies found statistical links with Alzheimer's disease, senile dementia, cerebral atrophy, chronic cerebral ischemia, stroke, transient ischemic attacks, heart disease, and hearing loss.
There are many causes of blurred vision:
- Use of atropine or other anticholinergics
- Presbyopia—Difficulty focusing on objects that are close. Common in the elderly. (Accommodation tends to decrease with age.)
- Cataracts—Cloudiness over the eye's lens, causing poor night-time vision, halos around lights, and sensitivity to glare. Daytime vision is eventually affected. Common in the elderly.
- Glaucoma—Increased pressure in the eye, causing poor night vision, blind spots, and loss of vision to either side. A major cause of blindness. Glaucoma can happen gradually or suddenly—if sudden, it is a medical emergency.
- Diabetes—Poorly controlled blood sugar can lead to temporary swelling of the lens of the eye, resulting in blurred vision. While it resolves if blood sugar control is reestablished, it is believed repeated occurrences promote the formation of cataracts (which are not temporary).
- Diabetic retinopathy—This complication of diabetes can lead to bleeding into the retina. Another common cause of blindness.
- Hypervitaminosis A—Excess consumption of vitamin A can cause blurred vision.
- Macular degeneration—Loss of central vision, blurred vision (especially while reading), distorted vision (like seeing wavy lines), and colors appearing faded. The most common cause of blindness in people over age 60.
- Eye infection, inflammation, or injury.
- Sjögren's syndrome, a chronic autoimmune inflammatory disease that destroys moisture producing glands, including lacrimal (tear)
- Floaters—Tiny particles drifting across the eye. Although often brief and harmless, they may be a sign of retinal detachment.
- Retinal detachment—Symptoms include floaters, flashes of light across your visual field, or a sensation of a shade or curtain hanging on one side of your visual field.
- Optic neuritis—Inflammation of the optic nerve from infection or multiple sclerosis. You may have pain when you move your eye or touch it through the eyelid.
- Stroke or transient ischemic attack
- Brain tumor
- Toxocara—A parasitic roundworm that can cause blurred vision
- Bleeding into the eye
- Temporal arteritis—Inflammation of an artery in the brain that supplies blood to the optic nerve.
- Migraine headaches—Spots of light, halos, or zigzag patterns are common symptoms prior to the start of the headache. A retinal migraine is when you have only visual symptoms without a headache.
- Myopia—Blurred vision may be a systemic sign of local anaesthetic toxicity
- Reduced blinking—Lid closure that occurs too infrequently often leads to irregularities of the tear film due to prolonged evaporation, thus resulting in disruptions in visual perception.
- Carbon monoxide poisoning—Reduced oxygen delivery can effect many areas of the body including vision. Other symptoms caused by CO include vertigo, hallucination and sensitivity to light.
Causes of photophobia relating directly to the eye itself include:
- Achromatopsia
- Aniridia
- Anticholinergic drugs may cause photophobia by paralyzing the iris sphincter muscle.
- Aphakia (absence of the lens of the eye)
- Blepharitis
- Buphthalmos (abnormally narrow angle between the cornea and iris)
- Cataracts
- Coloboma
- Cone dystrophy
- Congenital abnormalities of the eye
- Viral conjunctivitis ("pink eye")
- Corneal abrasion
- Corneal dystrophy
- Corneal ulcer
- Disruption of the corneal epithelium, such as that caused by a corneal foreign body or keratitis
- Ectopia lentis
- Endophthalmitis
- Eye trauma caused by disease, injury, or infection such as chalazion, episcleritis, glaucoma, keratoconus, or optic nerve hypoplasia
- Hydrophthalmos, or congenital glaucoma
- Iritis
- The drug isotretinoin (Accutane/Roaccutane) has been associated with photophobia
- Optic neuritis
- Pigment dispersion syndrome
- Pupillary dilation (naturally or chemically induced)
- Retinal detachment
- Scarring of the cornea or sclera
- Uveitis
The cause of pseudoexfoliation glaucoma is generally unknown.
PEX is generally believed to be a systemic disorder, possibly of the basement membrane of the eye. Researchers have noticed deposits of PEX material in various parts of the body, including in the skin, heart, lungs, liver, kidneys, and elsewhere. Nevertheless, what is puzzling is that PEX tends to happen in only one eye first, which scientists call "unilaterality", and in some cases, gradually afflicts the other eye, which is termed "bilaterality". According to this reasoning, if PEX were a systemic disorder, then both eyes should be affected at the same time, but they are not. There are contrasting reports about the extent and speed with which PEX moves from one eye to both eyes. According to one report, PEX develops in the second eye in 40% of cases. A contrasting report was that PEX can be found in both eyes in almost all situations if an electron microscope is used to examine the second eye, or if a biopsy of the conjunctiva was done, but that the extent of PEX is the second eye was much less than the first one. A different report suggested that two thirds of PEX patients had flakes in only one eye. In one long term study, patients with PEX in only one eye were studied, and it was found that over time, 13% progressed to having both eyes afflicted by PEX. Scientists believe that elevated levels of plasma homocysteine are a risk factor for cardiovascular disease, and two studies have found higher levels of plasma homocysteine in PEX patients, or elevated homocysteine concentrations in tear fluids produced by the eye.
There is speculation that PEX may be caused by oxidative damage and the presence of "free radicals", although the exact nature of how this might happen is still under study. Studies of PEX patients have found a decrease in the concentrations of ascorbic acid, increase in concentrations of malondialdehyde, and an increase in concentrations of 8-iso-prostaglandinF2a.
There is speculation that genetics may play a role in PEX. A predisposition to develop PEX later in life may be an inherited characteristic, according to one account. One report suggested the genetic component was "strong". One study performed in Iceland and Sweden has associated PEX with polymorphisms in gene LOXL1. A report suggested that a specific gene named LOXL1 which was a member of the family of enzymes which play a role in the linking of collagen and elastin inside cells. LOXL1 was responsible for "all the heritability" of PEX, according to one source. Two distinct mutations in which a single nucleotide was changed, or called a "single nucleotide polymorphism" or SNP, was discovered in Scandinavian populations and confirmed in other populations, and may be involved with the onset of PEX.
Researchers are investigating whether factors such as exposure to ultraviolet light, living in northern latitudes, or altitude influence the onset of PEX. One report suggested that climate was not a factor related to PEX. Another report suggested a possible link to sunlight as well as a possible autoimmune response, or possibly a virus.
Neurological causes for photophobia include:
- Autism spectrum disorders
- Chiari malformation
- Occipital Neuralgia
- Dyslexia
- Encephalitis including Myalgic encephalomyelitis aka Chronic fatigue syndrome
- Meningitis
- Trigeminal disturbance causes central sensitization (hence, multiple other associated hypersensitivities. Causes can be bad bite, infected tooth, etc.
- Subarachnoid haemorrhage
- Tumor of the posterior cranial fossa
In the United States, the incidence of primary congenital glaucoma is about one in 10,000 live births. Worldwide, the incidence ranges from a low of 1:22,000 in Northern Ireland to a high of 1:2,500 in Saudi Arabia and 1:1,250 in Romania. In about two-thirds of cases, it is bilateral. The distribution between males and females varies with geography. In North America and Europe it is more common in boys, whereas in Japan it is more common in girls.
- Congenital glaucoma
- Incidence: one in every 10000-15000 live births.
- Bilateral in up to 80% of cases.
- Most cases are sporadic (90%). However, in the remaining 10% there appears to be a strong familial component.
The pressure within the eye is maintained by the balance between the fluid that enters the eye through the ciliary body and the fluid that exits the eye through the trabecular meshwork.
Ocular hypertension is the presence of elevated fluid pressure inside the eye (intraocular pressure), usually with no optic nerve damage or visual field loss.
For most individuals, the normal range of introcular pressure is between 10 mmHg and 21 mmHg. Elevated intraocular pressure is an important risk factor for glaucoma. The Ocular Hypertension Treatment Study, a large, multicentered, randomized clinical trial, determined that topical ocular hypotensive medication delays or prevents the onset of Primary Open-Angle Glaucoma. Accordingly, most individuals with consistently elevated intraocular pressures of greater than 21mmHg, particularly if they have other risk factors, are treated in an effort to prevent vision loss from glaucoma.
Of the many causes, conjunctivitis is the most common. Others include:
"Usually nonurgent"
- blepharitis - a usually chronic inflammation of the eyelids with scaling, sometimes resolving spontaneously
- subconjunctival hemorrhage - a sometimes dramatic, but usually harmless, bleeding underneath the conjunctiva most often from spontaneous rupture of the small, fragile blood vessels, commonly from a cough or sneeze
- inflamed pterygium - a benign, triangular, horizontal growth of the conjunctiva, arising from the inner side, at the level of contact of the upper and lower eyelids, associated with exposure to sunlight, low humidity and dust. It may be more common in occupations such as farming and welding.
- inflamed pinguecula - a yellow-white deposit close to the junction between the cornea and sclera, on the conjunctiva. It is most prevalent in tropical climates with much UV exposure. Although harmless, it can occasionally become inflamed.
- dry eye syndrome - caused by either decreased tear production or increased tear film evaporation which may lead to irritation and redness
- airborne contaminants or irritants
- tiredness
- drug use including cannabis
"Usually urgent"
- acute angle closure glaucoma - implies injury to the optic nerve with the potential for irreversible vision loss which may be permanent unless treated quickly, as a result of increased pressure within the eyeball. Not all forms of glaucoma are acute, and not all are associated with increased 'intra-ocular' pressure.
- injury
- keratitis - a potentially serious inflammation or injury to the cornea (window), often associated with significant pain, light intolerance, and deterioration in vision. Numerous causes include virus infection. Injury from contact lenses can lead to keratitis.
- iritis - together with the ciliary body and choroid, the iris makes up the uvea, part of the middle, pigmented, structures of the eye. Inflammation of this layer (uveitis) requires urgent control and is estimated to be responsible for 10% of blindness in the United States.
- scleritis - a serious inflammatory condition, often painful, that can result in permanent vision loss, and without an identifiable cause in half of those presenting with it. About 30-40% have an underlying systemic autoimmune condition.
- episcleritis - most often a mild, inflammatory disorder of the 'white' of the eye unassociated with eye complications in contrast to scleritis, and responding to topical medications such as anti-inflammatory drops.
- tick borne illnesses like Rocky Mountain spotted fever - the eye is not primarily involved, but the presence of conjunctivitis, along with fever and rash, may help with the diagnosis in appropriate circumstances.
The incidence and prevalence of PMD are unknown, and no studies have yet investigated its prevalence or incidence. However, it is generally agreed that PMD is a very rare condition. Some uncertainty regarding the incidence of PMD may be attributed to its confusion with keratoconus. PMD is not linked to race or age, although most cases present early in life, between 20 and 40 years of age. While PMD is usually considered to affect men and women equally, some studies suggest that it may affect men more frequently.
Several diseases have been observed in patients with PMD. However, no causal relationships have been established between any of the associated diseases and the pathogenesis of PMD. Such diseases include: chronic open-angle glaucoma, retinitis pigmentosa, retinal lattice degeneration, scleroderma, kerato-conjunctivitis, eczema, and hyperthyroidism.
It is the name given to the localised bulge in limbal area, lined by the root of the iris. It results due to ectasia of weak scar tissue formed at the limbus, following healing of a perforating injury or a peripheral corneal ulcer. There may be associated secondary angle closure glaucoma, may cause progression of the bulge if not treated. Defective vision occurs due to marked corneal astigmatism. Treatment consists of localised staphylectomy under heavy doses of oral steroids.
As the name implies, it is the bulge of weak sclera lined by ciliary body, which occurs about 2–3 mm away from the limbus. Its common causes are thinning of sclera following perforating injury, scleritis & absolute glaucoma.
it is part of anterior staphyloma
Pigment dispersion syndrome (PDS) is an affliction of the eye that can lead to a form of glaucoma known as pigmentary glaucoma. It takes place when pigment cells slough off from the back of the iris and float around in the aqueous humor. Over time, these pigment cells can accumulate in the anterior chamber in such a way that it can begin to clog the trabecular meshwork (the major site of aqueous humour drainage), which can in turn prevent the aqueous humour from draining and therefore increases the pressure inside the eye. With PDS, the intraocular pressure tends to spike at times and then can return to normal. Exercise has been shown to contribute to spikes in pressure as well. When the pressure is great enough to cause damage to the optic nerve, this is called pigmentary glaucoma. As with all types of glaucoma, when damage happens to the optic nerve fibers, the vision loss that occurs is irreversible and painless.
This condition is rare, but occurs most often in Caucasians, particularly men, and the age of onset is relatively low: mid 20s to 40s. As the crystalline lens hardens with age, the lens zonules pull away from the iris and the syndrome lessens and stops. Most sufferers are nearsighted.
There is no cure yet, but pigmentary glaucoma can be managed with eye drops or treated with simple surgeries. One of the surgeries is the YAG laser procedure in which a laser is used to break up the pigment clogs, and reduce pressure. If caught early and treated, chances of glaucoma are greatly reduced. Sufferers are often advised not to engage in high-impact sports such as long-distance running or martial arts, as strong impacts can cause more pigment cells to slough off.
A 2016 Cochrane Review sought to determine the effectiveness of YAG laser iridotomy versus no laser iridotomy for pigment dispersion syndrome and pigmentary glaucoma, in 195 participants, across five studies. No clear benefits in preventing loss of visual field were found for eyes treated with peripheral laser iridotomy. There was weak evidence suggesting that laser iridotomy could be more effective in lowering intraocular pressure in eyes versus no treatment.
The cornea requires to be transparent to transmit light to the retina. Because of injury, infection or inflammation, an area of opacity may develop which can be seen with a penlight or ophthalmoscope. In rare instances, this opacity is congenital. In some, there is a family history of corneal growth disorders which may be progressive with age. Much more commonly, misuse of contact lenses may be a precipitating factor. Whichever, it is always potentially serious and sometimes necessitates urgent treatment and corneal opacities are the fourth leading cause of blindness.
Opacities may be keratic, that is, due to the deposition of inflammatory cells, hazy, usually from corneal edema, or they may be localized in the case of corneal ulcer or keratitis.
Corneal epithelial disruptions may be detected with fluorescein staining of the eye, and careful observation with cobalt-blue light.
Corneal epithelial disruptions would stain green, which represents some injury of the corneal epithelium.
These types of disruptions may be due to corneal inflammations or physical trauma to the cornea, such as a foreign body.
A synechia is an eye condition where the iris adheres to either the cornea (i.e. "anterior synechia") or lens (i.e. "posterior synechia"). Synechiae can be caused by ocular trauma, iritis or iridocyclitis and may lead to certain types of glaucoma. It is sometimes visible on careful examination but usually more easily through an ophthalmoscope or slit-lamp.
Anterior synechia causes closed angle glaucoma, which means that the iris closes the drainage way of aqueous humour which in turn raises the intraocular pressure. Posterior synechia also cause glaucoma, but with a different mechanism. In posterior synechia, the iris adheres to the lens, blocking the flow of aqueous humor from the posterior chamber to the anterior chamber. This blocked drainage raises the intraocular pressure.
Untreated glaucoma leads to total blindness. Surgical treatment is required. Presently-utilized surgical procedures include goniotomy, trabeculotomy, or trabeculectomy.
Mydriatic/cycloplegic agents, such as topical homatropine, which is similar in action to atropine, are useful in breaking and preventing the formation of posterior synechia by keeping the iris dilated and away from the crystalline lens. Dilation of the pupil in an eye with the synechia can cause the pupil to take an irregular, non-circular shape (Dyscoria) as shown in the photograph. If the pupil can be fully dilated during the treatment of iritis, the prognosis for recovery from synechia is good. This is a treatable status.
To subdue the inflammation, use topical corticosteroids. If the intra-ocular pressure is elevated then use a PGA such as Travatan Z.
Buphthalmos (plural: buphthalmoses) is enlargement of the eyeball and is most commonly seen in infants and young children. It is sometimes referred to as buphthalmia (plural buphthalmias). It usually appears in the newborn period or the first 3 months of life. and in most cases indicates the presence of congenital (infantile) glaucoma, which is a disorder in which elevated pressures within the eye lead to structural eye damage and vision loss.
Visual function declines as a result of the irregular corneal shape, resulting in astigmatism, and causing a distortion in vision. Deterioration can become severe over time.
With posterior lens luxation, the lens falls back into the vitreous humour and lies on the floor of the eye. This type causes fewer problems than anterior lens luxation, although glaucoma or ocular inflammation may occur. Surgery is used to treat dogs with significant symptoms. Removal of the lens before it moves to the anterior chamber may prevent secondary glaucoma.
Rubeosis iridis, also called neovascularization of the iris (NVI), is a medical condition of the iris of the eye in which new abnormal blood vessels (formed by neovascularization) are found on the surface of the iris.