Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A study of aortic cross-clamping, a common procedure in cardiac surgery, demonstrated a strong potential benefit with further research ongoing.
An intriguing area of research demonstrates the ability of a reduction in body temperature to limit ischemic injuries. This procedure is called therapeutic hypothermia, and it has been shown by a number of large, high-quality randomised trials to significantly improve survival and reduce brain damage after birth asphyxia in newborn infants, almost doubling the chance of normal survival. For a full review see Hypothermia therapy for neonatal encephalopathy.
However, the therapeutic effect of hypothermia does not confine itself to metabolism and membrane stability. Another school of thought focuses on hypothermia’s ability to prevent the injuries that occur after circulation returns to the brain, or what is termed injuries. In fact an individual suffering from an ischemic insult continues suffering injuries well after circulation is restored. In rats it has been shown that neurons often die a full 24 hours after blood flow returns. Some theorize that this delayed reaction derives from the various inflammatory immune responses that occur during reperfusion. These inflammatory responses cause intracranial pressure, pressure which leads to cell injury and in some situations cell death. Hypothermia has been shown to help moderate intracranial pressure and therefore to minimize the harmful effect of a patient’s inflammatory immune responses during reperfusion. Beyond this, reperfusion also increases free radical production. Hypothermia too has been shown to minimize a patient’s production of deadly free radicals during reperfusion. Many now suspect it is because hypothermia reduces both intracranial pressure and free radical production that hypothermia improves patient outcome following a blockage of blood flow to the brain.
The fact that the ischemic cascade involves a number of steps has led doctors to suspect that neuroprotectants such as calcium channel blockers or glutamate antagonists could be produced to interrupt the cascade at a single one of the steps, blocking the downstream effects. Though initial trials for such neuroprotective drugs led many to be hopeful, until recently, human clinical trials with neuroprotectants such as NMDA receptor antagonists were unsuccessful.
On October 7, 2003, a U.S. patent number 6630507 entitled "Cannabinoids as Antioxidants and Neuroprotectants" was awarded to the United States Department of Health and Human Services, based on research carried out at the National Institute of Mental Health (NIMH), and the National Institute of Neurological Disorders and Stroke (NINDS). This patent claims that cannabinoids are "useful in the treatment and prophylaxis of wide variety of oxidation associated diseases such as ischemia, inflammatory ... and autoimmune diseases. The cannabinoids are found to have particular application as neuroprotectants, for example in limiting neurological damage following ischemic insults, such as stroke and trauma..."
On November 17, 2011, in accordance with 35 U.S.C. 209(c)(1) and 37 CFR part 404.7(a)(1)(i), the National Institutes of Health, Department of Health and Human Services, published in the Federal Register, that it is contemplating the grant of an exclusive patent license to practice the invention embodied in U.S. Patent 6,630,507, entitled “Cannabinoids as antioxidants and neuroprotectants” and PCT Application Serial No. PCT/US99/08769 and foreign equivalents thereof, entitled “Cannabinoids as antioxidants and neuroprotectants” [HHS Ref. No. E-287-1997/2] to KannaLife Sciences Inc., which has offices in New York, U.S. This patent and its foreign counterparts have been assigned to the Government of the United States of America. The prospective exclusive license territory may be worldwide, and the field of use may be limited to: The development and sale of cannabinoid(s) and cannabidiol(s) based therapeutics as antioxidants and neuroprotectants for use and delivery in humans, for the treatment of hepatic encephalopathy, as claimed in the Licensed Patent Rights.
Traumatic injury to an extremity may produce partial or total occlusion of a vessel from compression, shearing or laceration. Acute arterial occlusion may develop as a result of arterial dissection in the carotid artery or aorta or as a result of iatrogenic arterial injury (e.g., after angiography).
An inadequate flow of blood to a part of the body may be caused by any of the following:
- Thoracic outlet syndrome (compression of the brachial plexus)
- Atherosclerosis (lipid-laden plaques obstructing the lumen of arteries)
- Hypoglycemia (lower than normal level of glucose)
- Tachycardia (abnormally rapid beating of the heart)
- Radiotherapy
- Hypotension (low blood pressure, e.g. in septic shock, heart failure)
- Outside compression of a blood vessel, e.g. by a tumor or in the case of superior mesenteric artery syndrome
- Sickle cell disease (abnormally shaped red blood cells)
- Induced g-forces which restrict the blood flow and force the blood to the extremities of the body, as in acrobatics and military flying
- Localized extreme cold, such as by frostbite or improper cold compression therapy
- Tourniquet application
- An increased level of glutamate receptor stimulation
- Arteriovenous malformations, and peripheral artery occlusive disease
- rupture of significant blood vessels supplying a tissue or organ.
- Anemia vasoconstricts the periphery so that red blood cells can work internally on vital organs such as the heart, brain, etc., thus causing lack of oxygen to the periphery.
- Premature discontinuation of any oral anticoagulant.
- Unconsciousness, such as due to the ingestion of excessive doses of central depressants like alcohol or opioids, can result in ischemia of the extremities due to unusual body positions that prevent normal circulation
The ischemic (ischaemic) cascade is a series of biochemical reactions that are initiated in the brain and other aerobic tissues after seconds to minutes of ischemia (inadequate blood supply). This is typically secondary to stroke, injury, or cardiac arrest due to heart attack. Most ischemic neurons that die do so due to the activation of chemicals produced during and after ischemia. The ischemic cascade usually goes on for two to three hours but can last for days, even after normal blood flow returns.
A cascade is a series of events in which one event triggers the next, in a linear fashion. Thus "ischemic cascade" is actually a misnomer, since the events are not always linear: in some cases they are circular, and sometimes one event can cause or be caused by multiple events. In addition, cells receiving different amounts of blood may go through different chemical processes. Despite these facts, the ischemic cascade can be generally characterized as follows:
1. Lack of oxygen causes the neuron's normal process for making ATP for energy to fail.
2. The cell switches to anaerobic metabolism, producing lactic acid.
3. ATP-reliant ion transport pumps fail, causing the cell to become depolarized, allowing ions, including calcium (Ca), to flow into the cell.
4. The ion pumps can no longer transport calcium out of the cell, and intracellular calcium levels get too high.
5. The presence of calcium triggers the release of the excitatory amino acid neurotransmitter glutamate.
6. Glutamate stimulates AMPA receptors and Ca-permeable NMDA receptors, which open to allow more calcium into cells.
7. Excess calcium entry overexcites cells and causes the generation of harmful chemicals like free radicals, reactive oxygen species and calcium-dependent enzymes such as calpain, endonucleases, ATPases, and phospholipases in a process called excitotoxicity. Calcium can also cause the release of more glutamate.
8. As the cell's membrane is broken down by phospholipases, it becomes more permeable, and more ions and harmful chemicals flow into the cell.
9. Mitochondria break down, releasing toxins and apoptotic factors into the cell.
10. The caspase-dependent apoptosis cascade is initiated, causing cells to "commit suicide."
11. If the cell dies through necrosis, it releases glutamate and toxic chemicals into the environment around it. Toxins poison nearby neurons, and glutamate can overexcite them.
12. If and when the brain is reperfused, a number of factors lead to reperfusion injury.
13. An inflammatory response is mounted, and phagocytic cells engulf damaged but still viable tissue.
14. Harmful chemicals damage the blood–brain barrier.
15. Cerebral edema (swelling of the brain) occurs due to leakage of large molecules like albumins from blood vessels through the damaged blood brain barrier. These large molecules pull water into the brain tissue after them by osmosis. This "vasogenic edema" causes compression of and damage to brain tissue (Freye 2011; Acquired Mitochondropathy-A New Paradigm in Western Medicine Explaining Chronic Diseases).
While some investigations suggest a possible beneficial effect of mesenchymal stem cells on heart and kidney reperfusion injury, to date, none have explored the role of stem cells in muscle tissue exposed to ischemia-reperfusion injury.
Stem cells have been implicated in the regeneration of skeletal muscle after traumatic and blast injuries, and have been shown to hone to muscle damaged after exercise.
Serum lactate level is a proxy measure of tissue oxygenation. When tissues do not have adequate oxygen delivery (i.e., are ischemic), they revert to less efficient metabolic processes, producing lactic acid.
Myoglobin is released from damaged muscle, as in the case of ischemia.
Serum creatinine and BUN may be elevated in the setting of Acute Kidney Injury.
Brain ischemia has been linked to a variety of diseases or abnormalities. Individuals with sickle cell anemia, compressed blood vessels, ventricular tachycardia, plaque buildup in the arteries, blood clots, extremely low blood pressure as a result of heart attack, and congenital heart defects have a higher predisposition to brain ischemia in comparison their healthy counterparts.
Sickle cell anemia may cause brain ischemia associated with the irregularly shaped blood cells. Sickle shaped blood cells clot more easily than normal blood cells, impeding blood flow to the brain.
Compression of blood vessels may also lead to brain ischemia, by blocking the arteries that carry oxygen to the brain. Tumors are one cause of blood vessel compression.
Ventricular tachycardia represents a series of irregular heartbeats that may cause the heart to completely shut down resulting in cessation of oxygen flow. Further, irregular heartbeats may result in formation of blood clots, thus leading to oxygen deprivation to all organs.
Blockage of arteries due to plaque buildup may also result in ischemia. Even a small amount of plaque build up can result in the narrowing of passageways, causing that area to become more prone to blood clots. Large blood clots can also cause ischemia by blocking blood flow.
A heart attack can also cause brain ischemia due to the correlation that exists between heart attack and low blood pressure. Extremely low blood pressure usually represents the inadequate oxygenation of tissues. Untreated heart attacks may slow blood flow enough that blood may start to clot and prevent the flow of blood to the brain or other major organs. Extremely low blood pressure can also result from drug overdose and reactions to drugs. Therefore, brain ischemia can result from events other than heart attacks.
Congenital heart defects may also cause brain ischemia due to the lack of appropriate artery formation and connection. People with congenital heart defects may also be prone to blood clots.
Other events that may result in brain ischemia include cardiorespiratory arrest, stroke, and severe irreversible brain damage.
Recently, Moyamoya disease has also been identified as a potential cause for brain ischemia. Moyamoya disease is an extremely rare cerebrovascular condition that limits blood circulation to the brain, consequently leading to oxygen deprivation.
Therapeutic hypothermia has been attempted to improve results post brain ischemia . This procedure was suggested to be beneficial based on its effects post cardiac arrest. Evidence supporting the use of therapeutic hypothermia after brain ischemia, however, is limited.
A closely related disease to brain ischemia is brain hypoxia. Brain hypoxia is the condition in which there is a decrease in the oxygen supply to the brain even in the presence of adequate blood flow. If hypoxia lasts for long periods of time, coma, seizures, and even brain death may occur. Symptoms of brain hypoxia are similar to ischemia and include inattentiveness, poor judgment, memory loss, and a decrease in motor coordination. Potential causes of brain hypoxia are suffocation, carbon monoxide poisoning, severe anemia, and use of drugs such as cocaine and other amphetamines. Other causes associated with brain hypoxia include drowning, strangling, choking, cardiac arrest, head trauma, and complications during general anesthesia. Treatment strategies for brain hypoxia vary depending on the original cause of injury, primary and/or secondary.
Cerebral hypoxia is a form of hypoxia (reduced supply of oxygen), specifically involving the brain; when the brain is completely deprived of oxygen, it is called "cerebral anoxia". There are four categories of cerebral hypoxia; they are, in order of severity: diffuse cerebral hypoxia (DCH), focal cerebral ischemia, cerebral infarction, and global cerebral ischemia. Prolonged hypoxia induces neuronal cell death via apoptosis, resulting in a hypoxic brain injury.
Cases of total oxygen deprivation are termed "anoxia", which can be hypoxic in origin (reduced oxygen availability) or ischemic in origin (oxygen deprivation due to a disruption in blood flow). Brain injury as a result of oxygen deprivation either due to hypoxic or anoxic mechanisms are generally termed hypoxic/anoxic injuries (HAI). Hypoxic ischemic encephalopathy (HIE) is a condition that occurs when the entire brain is deprived of an adequate oxygen supply, but the deprivation is not total. While HIE is associated in most cases with oxygen deprivation in the neonate due to birth asphyxia, it can occur in all age groups, and is often a complication of cardiac arrest.
TBI is a leading cause of death and disability around the globe and presents a major worldwide social, economic, and health problem. It is the number one cause of coma, it plays the leading role in disability due to trauma, and is the leading cause of brain damage in children and young adults. In Europe it is responsible for more years of disability than any other cause. It also plays a significant role in half of trauma deaths.
Findings on the frequency of each level of severity vary based on the definitions and methods used in studies. A World Health Organization study estimated that between 70 and 90% of head injuries that receive treatment are mild, and a US study found that moderate and severe injuries each account for 10% of TBIs, with the rest mild.
The incidence of TBI varies by age, gender, region and other factors. Findings of incidence and prevalence in epidemiological studies vary based on such factors as which grades of severity are included, whether deaths are included, whether the study is restricted to hospitalized people, and the study's location. The annual incidence of mild TBI is difficult to determine but may be 100–600 people per 100,000.
Mild and moderate cerebral hypoxia generally has no impact beyond the episode of hypoxia; on the other hand, the outcome of severe cerebral hypoxia will depend on the success of damage control, amount of brain tissue deprived of oxygen, and the speed with which oxygen was restored.
If cerebral hypoxia was localized to a specific part of the brain, brain damage will be localized to that region. A general consequence may be epilepsy. The long-term effects will depend on the purpose of that portion of the brain. Damage to the Broca's area and the Wernicke's area of the brain (left side) typically causes problems with speech and language. Damage to the right side of the brain may interfere with the ability to express emotions or interpret what one sees. Damage on either side can cause paralysis of the opposite side of the body.
The effects of certain kinds of severe generalized hypoxias may take time to develop. For example, the long-term effects of serious carbon monoxide poisoning usually may take several weeks to appear. Recent research suggests this may be due to an autoimmune response caused by carbon monoxide-induced changes in the myelin sheath surrounding neurons.
If hypoxia results in coma, the length of unconsciousness is often indicative of long-term damage. In some cases coma can give the brain an opportunity to heal and regenerate, but, in general, the longer a coma, the greater the likelihood that the person will remain in a vegetative state until death. Even if the patient wakes up, brain damage is likely to be significant enough to prevent a return to normal functioning.
Long-term comas can have a significant impact on a patient's families. Families of coma victims often have idealized images of the outcome based on Hollywood movie depictions of coma. Adjusting to the realities of ventilators, feeding tubes, bedsores, and muscle wasting may be difficult. Treatment decision often involve complex ethical choices and can strain family dynamics.
Nontraumatic intraparenchymal hemorrhage most commonly results from hypertensive damage to blood vessel walls e.g.:
- hypertension
- eclampsia
- drug abuse,
but it also may be due to autoregulatory dysfunction with excessive cerebral blood flow e.g.:
- reperfusion injury
- hemorrhagic transformation
- cold exposure
- rupture of an aneurysm or arteriovenous malformation (AVM)
- arteriopathy (e.g. cerebral amyloid angiopathy, moyamoya)
- altered hemostasis (e.g. thrombolysis, anticoagulation, bleeding diathesis)
- hemorrhagic necrosis (e.g. tumor, infection)
- venous outflow obstruction (e.g. cerebral venous sinus thrombosis).
Nonpenetrating and penetrating cranial trauma can also be common causes of intracerebral hemorrhage.
In the US, the case fatality rate is estimated to be 21% by 30 days after TBI. A study on Iraq War soldiers found that severe TBI carries a mortality of 30–50%. Deaths have declined due to improved treatments and systems for managing trauma in societies wealthy enough to provide modern emergency and neurosurgical services. The fraction of those who die after being hospitalized with TBI fell from almost half in the 1970s to about a quarter at the beginning of the 21st century. This decline in mortality has led to a concomitant increase in the number of people living with disabilities that result from TBI.
Biological, clinical, and demographic factors contribute to the likelihood that an injury will be fatal. In addition, outcome depends heavily on the cause of head injury. In the US, patients with fall-related TBIs have an 89% survival rate, while only 9% of patients with firearm-related TBIs survive. In the US, firearms are the most common cause of fatal TBI, followed by vehicle accidents and then falls. Of deaths from firearms, 75% are considered to be suicides.
The incidence of TBI is increasing globally, due largely to an increase in motor vehicle use in low- and middle-income countries. In developing countries, automobile use has increased faster than safety infrastructure could be introduced. In contrast, vehicle safety laws have decreased rates of TBI in high-income countries, which have seen decreases in traffic-related TBI since the 1970s. Each year in the United States, about two million people suffer a TBI, approximately 675,000 injuries are seen in the emergency department, and about 500,000 patients are hospitalized. The yearly incidence of TBI is estimated at 180–250 per 100,000 people in the US, 281 per 100,000 in France, 361 per 100,000 in South Africa, 322 per 100,000 in Australia, and 430 per 100,000 in England. In the European Union the yearly aggregate incidence of TBI hospitalizations and fatalities is estimated at 235 per 100,000.
Common causes of head injury are motor vehicle traffic collisions, home and occupational accidents, falls, and assaults. Wilson's disease has also been indicative of head injury. According to the United States CDC, 32% of traumatic brain injuries (another, more specific, term for head injuries) are caused by falls, 10% by assaults, 16.5% by being struck or against something, 17% by motor vehicle accidents, 21% by other/unknown ways. In addition, the highest rate of injury is among children ages 0–14 and adults age 65 and older.
Trauma to the lung can also cause an air embolism. This may happen after a patient is placed on a ventilator and air is forced into an injured vein or artery, causing sudden death. Breath-holding while ascending from scuba diving may also force lung air into pulmonary arteries or veins in a similar manner, due to the pressure difference.
A wide range of factors have been identified as being predictive of PCS, including low socioeconomic status, previous mTBI, a serious associated injury, headaches, an ongoing court case, and female gender. Being older than 40 and being female have also been identified as being predictive of a diagnosis of PCS, and women tend to report more severe symptoms. In addition, the development of PCS can be predicted by having a history of alcohol abuse, low cognitive abilities before the injury, a personality disorder, or a medical illness not related to the injury. PCS is also more prevalent in people with a history of psychiatric conditions such as clinical depression or anxiety before the injury.
Mild brain injury-related factors that increase the risk for persisting post-concussion symptoms include an injury associated with acute headache, dizziness, or nausea; an acute Glasgow Coma Score of 13 or 14; and suffering another head injury before recovering from the first. The risk for developing PCS also appears to be increased in people who have traumatic memories of the injury or expect to be disabled by the injury.
Air can be injected directly into a vein or artery accidentally during clinical procedures. Misuse of a syringe to meticulously remove air from the vascular tubing of a hemodialysis circuit can allow air into the vascular system. Venous air embolism is a rare complication of diagnostic and therapeutic procedures requiring catheterization of a vein or artery. If a significant embolism occurs, the cardiovascular, pulmonary, or central nervous system may be affected. Interventions to remove or mitigate the embolism may include procedures to reduce bubble size, or withdrawal of air from the right atrium.
In children with uncomplicated minor head injuries the risk of intra cranial bleeding over the next year is rare at 2 cases per 1 million. In some cases transient neurological disturbances may occur, lasting minutes to hours. Malignant post traumatic cerebral swelling can develop unexpectedly in stable patients after an injury, as can post traumatic seizures. Recovery in children with neurologic deficits will vary. Children with neurologic deficits who improve daily are more likely to recover, while those who are vegetative for months are less likely to improve. Most patients without deficits have full recovery. However, persons who sustain head trauma resulting in unconsciousness for an hour or more have twice the risk of developing Alzheimer's disease later in life.
Head injury may be associated with a neck injury. Bruises on the back or neck, neck pain, or pain radiating to the arms are signs of cervical spine injury and merit spinal immobilization via application of a cervical collar and possibly a long board.If the neurological exam is normal this is reassuring. Reassessment is needed if there is a worsening headache, seizure, one sided weakness, or has persistent vomiting.
To combat overuse of Head CT Scans yielding negative intracranial hemorrhage, which unnecessarily expose patients to radiation and increase time in the hospital and cost of the visit, multiple clinical decision support rules have been developed to help clinicians weigh the option to scan a patient with a head injury. Among these are the Canadian Head CT rule, the PECARN Head Injury/Trauma Algorithm, and the New Orleans/Charity Head Injury/Trauma Rule all help clinicians make these decisions using easily obtained information and noninvasive practices.
DAI is the result of traumatic shearing forces that occur when the head is rapidly accelerated or decelerated, as may occur in car accidents, falls, and assaults. Vehicle accidents are the most frequent cause of DAI; it can also occur as the result of child abuse such as in shaken baby syndrome.
Immediate disconnection of axons could be observed in severe brain injury, but the major damage of DAI is delayed secondary axon disconnections slowly developed over an extended time course. Tracts of axons, which appear white due to myelination, are referred to as white matter. Lesions in both grey and white matters are found in postmortem brains in CT and MRI exams.
Besides mechanical breaking of the axonal cytoskeleton, DAI pathology also includes secondary physiological changes such as interrupted axonal transport, progressive swellings and degeneration. Recent studies have linked these changes to twisting and misalignment of broken axon microtubules, as well as tau and APP deposition.
In younger patients, vascular malformations, specifically AVMs and cavernous angiomas are more common causes for hemorrhage. In addition, venous malformations are associated with hemorrhage.
In the elderly population, amyloid angiopathy is associated with cerebral infarcts as well as hemorrhage in superficial locations, rather than deep white matter or basal ganglia. These are usually described as "lobar". These bleedings are not associated with systemic amyloidosis.
Hemorrhagic neoplasms are more complex, heterogeneous bleeds often with associated edema. These hemorrhages are related to tumor necrosis, vascular invasion and neovascularity. Glioblastomas are the most common primary malignancies to hemorrhage while thyroid, renal cell carcinoma, melanoma, and lung cancer are the most common causes of hemorrhage from metastatic disease.
Other causes of intraparenchymal hemorrhage include hemorrhagic transformation of infarction which is usually in a classic vascular distribution and is seen in approximately 24 to 48 hours following the ischemic event. This hemorrhage rarely extends into the ventricular system.
Diffuse axonal injury (DAI) is a brain injury in which damage in the form of extensive lesions in white matter tracts occurs over a widespread area. DAI is one of the most common and devastating types of traumatic brain injury, and is a major cause of unconsciousness and persistent vegetative state after severe head trauma. It occurs in about half of all cases of severe head trauma and may be the primary damage that occurs in concussion. The outcome is frequently coma, with over 90% of patients with severe DAI never regaining consciousness. Those who do wake up often remain significantly impaired.
DAI can occur in every degree of severity from very mild or moderate to very severe. Concussion may be a milder type of diffuse axonal injury.
Injury is damage to the body caused by external force. This may be caused by accidents, falls, hits, weapons, and other causes. Major trauma is injury that has the potential to cause prolonged disability or death.
In 2013, 4.8 million people died from injuries, up from 4.3 million in 1990. More than 30% of these deaths were transport-related injuries. In 2013, 367,000 children under the age of five died from injuries, down from 766,000 in 1990. Injuries are the cause of 9% of all deaths, and are the sixth-leading cause of death in the world.
In the United States, intrauterine hypoxia and birth asphyxia were listed together as the tenth leading cause of neonatal death.