Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The frequency is unknown, but the disease is considered to be very rare.
When originally characterized by Giedion, there was a relatively high mortality rate due to untreated kidney failure (end stage renal disease - ESRD). The remarkable improvements in kidney transplantation have reduced the mortality of Conorenal Syndrome substantially if not eliminated it entirely. Most diagnosis of the disease occurs when children present with kidney failure – usually between the ages of 10 and 14. There are no known cures for the syndrome and management of the symptoms seems to be the typical approach.
The epidemiology of branchio-oto-renal syndrome has it with a prevalence of 1/40,000 in Western countries.A 2014 review found 250 such cases in the country of Japan
Conorenal syndrome, also called Mainzer-Saldino syndrome or Saldino-Mainzer disease, is a collection of medical conditions that seem to have a common genetic cause.
The cause of branchio-oto-renal syndrome are mutations in genes, EYA1, SIX1, and SIX5 (approximately 40 percent of those born with this condition have a mutation in the EYA1 gene).
A thorough diagnosis should be performed on every affected individual, and siblings should be studied for deafness, parathyroid and renal disease. The syndrome should be considered in infants who have been diagnosed prenatally with a chromosome 10p defect, and those who have been diagnosed with well defined phenotypes of urinary tract abnormalities. Management consists of treating the clinical abnormalities at the time of presentation. Prognosis depends on the severity of the kidney disease.
TBS is an autosomal dominant involving the a mutation of the gene SALL1, which encodes a transcriptional repressor which interacts with TRF1/PIN2 and localizes to pericentromeric heterochromatin. The clinical features of TBS overlap with VATER and VACTERL associations, oculo-auriculo-vertebral (OAV) spectrum, branchio-oto-renal (BOR) syndrome, and Fanconi anemia and other 'anus-hand-ear' syndromes.
Although some symptoms can be life-threatening, many people diagnosed with Townes-Brocks Syndrome live a normal lifespan.
The recurrence of DOOR in siblings and the finding of DOOR syndrome in a few families with consanguinity suggest that the condition is an autosomal recessive genetic condition. Mutations in TBC1D24 have been identified in 9 families.
The overall incidence is ~1/42,000 to 1/50,000 people. Types I and II are the most common types of the syndrome, whereas types III and IV are rare. Type 4 is also known as Waardenburg‐Shah syndrome (association of Waardenburg syndrome with Hirschsprung disease).
Type 4 is rare with only 48 cases reported up to 2002.
About 1 in 30 students in schools for the deaf have Waardenburg syndrome. All races and sexes are affected equally. The highly variable presentation of the syndrome makes it difficult to arrive at precise figures for its prevalence.
Treatment is symptomatic, often addressing indicators associated with peripheral pulmonary artery stenosis. Laryngotracheal calcification resulting in dyspnea and forceful breathing can be treated with bronchodilators including the short and long-acting β2-agonists, and various anticholinergics. Prognosis is good, yet life expectancy depends on the severity and extent of diffuse pulmonary and arterial calcification.
Townes–Brocks syndrome (TBS) is a rare genetic disease that has been described in approximately 200 cases in the published literature. It affects both males and females equally. The condition was first identified in 1972. by Philip L. Townes, MD, PhD, who was at the time a human geneticists and Professor of Pediatrics, and Eric Brocks, MD, who was at the time a medical student, both at the University of Rochester.
The first symptom is typically diabetes mellitus, which is usually diagnosed around the age of 6. The next symptom to appear is often optic atrophy, the wasting of optic nerves, around the age of 11. The first signs of this are loss of colour vision and peripheral vision. The condition worsens over time, and people with optic atrophy are usually blind within 8 years of the first symptoms. Life expectancy of people suffering from this syndrome is about 30 years.
The chronic inflammation present in MWS over time can lead to deafness. In addition, the prolonged inflammation can lead to deposition of proteins in the kidney, a condition known as amyloidosis.
There is no known direct treatment. Current treatment efforts focus on managing the complications of Wolfram syndrome, such as diabetes mellitus and diabetes insipidus.
Iminoglycinuria is believed to be inherited in an autosomal recessive manner. This means a defective gene responsible for the disorder is located on an autosome, and inheritance requires two copies of the defective gene—one from each parent. Parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
A non-inherited cause of excess urinary excretion of proline and glycine, similar to that found in iminoglycinuria, is quite common to newborn infants younger than 6 months. Sometimes referred to as neonatal iminoglycinuria, it is due to underdevelopment of high-affinity transport mechanisms within the renal circuit, specifically PAT2, SIT1 and SLC6A18. The condition corrects itself with age. In cases where this persists beyond childhood, however, inherited hyperglycinuria or iminoglycinuria may be suspected.
Senter syndrome (also known as "Desmons' syndrome") is a cutaneous condition characterized by similar skin changes and congenital hearing impairment to keratitis–ichthyosis–deafness syndrome, but is associated with glycogen storage leading to hepatomegaly, hepatic cirrhosis, growth failure and mental retardation.
Keutel syndrome (KS) is a rare autosomal recessive genetic disorder characterized by abnormal diffuse cartilage calcification, hypoplasia of the mid-face, peripheral pulmonary stenosis, hearing loss, short distal phalanges (tips) of the fingers and mild mental retardation. Individuals with KS often present with peripheral pulmonary stenosis, brachytelephalangism, sloping forehead, midface hypoplasia, and receding chin. It is associated with abnormalities in the gene coding for matrix gla protein (MGP). Being an autosomal recessive disorder, it may be inherited from two unaffected, abnormal MGP-carrying parents. Thus, people who inherit two affected MGP genes will likely inherit KS.
It was first identified in 1972 as a novel rare genetic disorder sharing similar symptoms with chondrodysplasia punctata. Multiple forms of chondrodysplasia punctata share symptoms consistent with KS including abnormal cartilage calcification, forceful respiration, brachytelephalangism, hypotonia, psychomotor delay, and conductive deafness, yet peripheral pulmonary stenosis remains unique to KS.
No chromosomal abnormalities are reported in affected individuals, suggesting that familial consanguinity relates to the autosomal recessive mode of inheritance. Also, despite largely abnormal calcification of regions including the larynx, tracheobronchial tree, nose, pinna (anatomy), and epiglottis, patients exhibit normal serum calcium and phosphate levels.
Hystrix-like ichthyosis–deafness syndrome (also known as "HID syndrome") is a cutaneous condition characterized by a keratoderma.
Ayazi syndrome's inheritance pattern is described as x-linked recessive. Genes known to be deleted are CHM and POU3F4, both located on the Xq21 locus.
Bangstad syndrome is a severe, inherited congenital disorder associated with abnormalities of the cell membrane.
It was characterized in 1989.
Ear agenesis is a medical condition in which people are born without ears.
Because the middle and inner ears are necessary for hearing, people with complete agenesis of the ears are totally deaf. Minor agenesis that affects only the visible parts of the outer ear, which may be called microtia, typically produces cosmetic concerns and perhaps hearing impairment if the opening to the ear canal is blocked, but not deafness.
Eye agenesis is a medical condition in which people are born with no eyes.
There is currently no treatment or cure for Waardenburg syndrome. The symptom most likely to be of practical importance is deafness, and this is treated as any other irreversible deafness would be. In marked cases there may be cosmetic issues. Other abnormalities (neurological, structural, Hirschsprung disease) associated with the syndrome are treated symptomatically.
Mohr–Tranebjærg syndrome (MTS) is a rare X-liked recessive syndrome also known as deafness–dystonia syndrome and caused by mutation in the TIMM8A gene. It was first described in 1960. The severity of the symptoms may vary, but they progress usually to severe deafness and dystonia and sometimes are accompanied by cortical deterioration of vision and mental deterioration.
MWS occurs when a mutation in the "CIAS1" gene, encoding for NLRP3, leads to increased activity of the protein cryopyrin. This protein is partly responsible for the body's response to damage or infection. During these states, a cytokine called interleukin 1β is produced by an innate immune cell known as a macrophage. This cytokine interacts with a receptor on the surface of other immune cells to produce symptoms of inflammation such as fever, arthritis, and malaise. In MWS, the increased activity of cryopyrin leads to an increase in interleukin 1β. This leads to inflammation all throughout the body with the associated symptoms.