Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In ADPKD patients, gradual cyst development and expansion result in kidney enlargement, and during the course of the disease, glomerular filtration rate (GFR) remains normal for decades before kidney function starts to progressively deteriorate, making early prediction of renal outcome difficult. The CRISP study, mentioned in the treatment section above, contributed to build a strong rationale supporting the prognostic value of total kidney volume (TKV) in ADPKD; TKV (evaluated by MRI) increases steadily and a higher rate of kidney enlargement correlated with accelerated decline of GFR, while patient height-adjusted TKV (HtTKV) ≥600 ml/m predicts the development of stage 3 chronic kidney disease within 8 years.
Besides TKV and HtTKV, the estimated glomerular filtration rate (eGFR) has also been tentatively used to predict the progression of ADPKD. After the analysis of CT or MRI scans of 590 patients with ADPKD treated at the Mayo Translational Polycystic Kidney Disease Center, Irazabal and colleagues developed an imaging-based classification system to predict the rate of eGFR decline in patients with ADPKD. In this prognostic method, patients are divided into five subclasses of estimated kidney growth rates according to age-specific HtTKV ranges (1A, 6.0%) as delineated in the CRISP study. The decline in eGFR over the years following initial TKV measurement is significantly different between all five patient subclasses, with those in subclass 1E having the most rapid decline.
ADPKD individuals might have a normal life; conversely, ARPKD can cause kidney dysfunction and can lead to kidney failure by the age of 40-60. ADPKD1 and ADPKD2 are very different, in that ADPKD2 is much milder.
Currently, there are no therapies proven effective to prevent the progression of polycystic kidney disease (autosomal dominant).
It is accepted that kidney transplantation is the preferred treatment for ADPKD patients with end-stage renal disease (ESRD). Among American patients on the kidney transplant waiting list (as of December 2011), 7256 (8.4%) were listed due to cystic kidney disease and of the 16,055 renal transplants performed in 2011, 2057 (12.8%) were done for patients with cystic kidney disease, with 1,189 from deceased donors and 868 from living donors.
PKD is caused by abnormal genes which produce a specific abnormal protein which has an adverse affect on tubule development. PKD is a general term for two types, each having their own pathology and genetic cause: autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD).
Renal tuberculosis
And other causes of hypercalcemia (and thus hypercalciuria)
- Immobilization (leading to hypercalcemia and hypercalciuria)
- Milk-alkali syndrome
- Hypervitaminosis D
- Multiple myeloma
The prognosis of nephrocalcinosis is determined by the underlying cause. Most cases of nephrocalcinosis do not progress to end stage renal disease, however if not reated it can lead to renal dysfunction this includes primary hyperoxaluria, hypomagnesemic hypercalciuric nephrocalcinosis and Dent's disease. Once nephrocalcinosis is found, it is unlikely to be reversed, however, partial reversal has been reported in patients who have had successful treatment of hypercalciuria and hyperoxaluria following corrective intestinal surgery.
While most cases of horseshoe kidneys are asymptomatic and discovered upon autopsy, the condition may increase the risk for:
- Kidney obstruction – abnormal placement of ureter may lead to obstruction and dilation of the kidney.
- Kidney infections – associated with vesicoureteral reflux.
- Kidney stones – deviant orientation of kidneys combined with slow urine flow and kidney obstruction may lead to kidney stones.
- Kidney cancer – increased risk of renal cancer, especially Wilms' tumor, transitional cell carcinoma, and an occasional case report of carcinoid tumor. Despite increased risk, the overall risk is still relatively low.
The prevalence of horseshoe kidneys in females with Turner Syndrome is about 15%.
It can be associated with trisomy 18.
It can be associated with venous anomalies like left sided IVC 9.
There are three main types of primary hyperoxaluria, each associated with specific metabolic defects. Type 1 is the most common and rapidly progressing form, accounting for about 80% of all cases. Type 2 and 3 account for about approximately 10% each of the population.
Mutations in these genes cause a decreased production or activity of the proteins they make, which stops the normal breakdown of glyoxylate.
Treatment of renal papillary necrosis is supportive, any obstruction (urethral) can be dealt with via stenting. This condition is not linked to a higher possibility of renal failure. Control of infection is important, thus antimicrobial treatment is begun, so as to avert surgery (should the infection not respond).
The buildup of oxalate in the body causes increased renal excretion of oxalate (hyperoxaluria), which in turn results in renal and bladder stones. Stones cause urinary obstruction (often with severe and acute pain), secondary infection of urine and eventually kidney damage.
Oxalate stones in primary hyperoxaluria tend to be severe, resulting in relatively early kidney damage (say teenage, early adulthood), which impairs the excretion of oxalate leading to a further acceleration in accumulation of oxalate in the body.
After the development of renal failure patients may get deposits of oxalate in the bones, joints and bone marrow. Severe cases may develop haematological problems such as anaemia and thrombocytopaenia. The deposition of oxalate in the body is sometimes called "oxalosis" to be distinguished from "oxaluria" which refers to oxalate in the urine.
Renal failure is a serious complication requiring treatment in its own right. Dialysis can control renal failure but tends to be inadequate to dispose of excess oxalate. Renal transplant is more effective and this is the primary treatment of severe hyperoxaluria. Liver transplantation (often in addition to renal transplant) may be able to control the disease by correcting the metabolic defect.
In a proportion of patients with primary hyperoxaluria type 1 (about 5%), pyridoxine treatment (vitamin B6) may decrease oxalate excretion and prevent kidney stone formation.
Primary hyperoxaluria is an autosomal recessive disease, meaning both copies of the gene contain the mutation. Both parents must have one copy of this mutated gene to pass it on to their child, but they do not typically show signs or symptoms of the disease.
The pathophysiology of this condition can be due to analgesic nephropathy, which in turn is a result of long-term use of aspirin. It is a sequence of vascular occlusion, vasospasm, then infection and finally obstruction which leads to RPN.
Depending on the cause, a proportion of patients (5–10%) will never regain full kidney function, thus entering end-stage kidney failure and requiring lifelong dialysis or a kidney transplant. Patients with AKI are more likely to die prematurely after being discharged from hospital, even if their kidney function has recovered.
The risk of developing chronic kidney disease is increased (8.8-fold).
Renal osteodystrophy has been classically described to be the result of hyperparathyroidism secondary to hyperphosphatemia combined with hypocalcemia, both of which are due to decreased excretion of phosphate by the damaged kidney. Low activated vitamin D levels are a result of the damaged kidneys' inability to convert vitamin D into its active form, calcitriol, and result in further hypocalcaemia. High levels of fibroblast growth factor 23 seem now to be the most important cause of decreased calcitriol levels in CKD patients. In CKD the excessive production of parathyroid hormone increases the bone resorption rate and leads to histologic bone signs of secondary hyperparathyroidism. However, in other situations, the initial increase in parathyroid hormone and bone remodeling may be slowed down excessively by a multitude of factors including age, ethnic origin, sex, and treatments such as vitamin D, calcium salts, calcimimetics, steroids, and so forth, leading to low bone turnover or adynamic bone disease. Both high and low bone turnover diseases are currently observed equally in CKD patients treated by dialysis, and all types of renal osteodystrophy are associated with an increased risk of skeletal fractures, reduced quality of life, and poor clinical outcomes.
Mortality after AKI remains high. Overall it is 20%, 30% if the patient is referred to nephrology, 50% if dialyzed, and 70% if on ICU.
If AKI develops after major surgery (13.4% of all people who have undergone major surgery) the risk of death is markedly increased (over 12-fold).
The greatest risk factors for RCC are lifestyle-related; smoking, obesity and hypertension (high blood pressure) have been estimated to account for up to 50% of cases.
Occupational exposure to some chemicals such as asbestos, cadmium, lead, chlorinated solvents, petrochemicals and PAH (polycyclic aromatic hydrocarbon) has been examined by multiple studies with inconclusive results.
Another suspected risk factor is the long term use of non-steroidal anti-inflammatory drugs (NSAIDS).
Finally, studies have found that women who have had a hysterectomy are at more than double the risk of developing RCC than those who have not. Moderate alcohol consumption, on the other hand, has been shown to have a protective effect. The reason for this remains unclear.
Renal cysts and diabetes syndrome (RCAD), also known as MODY 5, is a form of maturity onset diabetes of the young.
HNF1β-related MODY is one of the less common forms of MODY, with some distinctive clinical features, including atrophy of the pancreas and several forms of renal disease. HNF1β, also known as transcription factor 2 (TCF2), is involved in early stages of embryonic development of several organs, including the pancreas, where it contributes to differentiation of pancreatic endocrine Ngn3 cell progenitors from non-endocrine embryonic duct cells. The gene is on chromosome 17q.
The degree of insulin deficiency is variable. Diabetes can develop from infancy through middle adult life, and some family members who carry the gene remain free of diabetes into later adult life. Most of those who develop diabetes show atrophy of the entire pancreas, with mild or subclincal deficiency of exocrine as well as endocrine function.
The non-pancreatic manifestations are even more variable. Kidney and genitourinary malformation and diseases may occur, but inconsistently even within a family, and the specific conditions include a range of apparently unrelated anomalies and processes. The most common genitourinary condition is cystic kidney disease, but there are many varieties even of this. Renal effects begin with structural alterations (small kidneys, renal cysts, anomalies of the renal pelvis and calices), but a significant number develop slowly progressive renal failure associated with chronic cystic disease of the kidneys. In some cases, renal cysts may be detected in utero. Kidney disease may develop before or after hyperglycemia, and a significant number of people with MODY5 are discovered in renal clinics.
With or without kidney disease, some people with forms of HNF1β have had various minor or major anomalies of the reproductive system. Male defects have included epididymal cysts, agenesis of the vas deferens, or infertility due to abnormal spermatozoa. Affected women have been found to have vaginal agenesis, hypoplastic, or bicornuate uterus.
Liver enzyme elevations are common, but clinically significant liver disease is not. Hyperuricaemia and early onset gout have occurred.
Acute tubular necrosis (ATN) is a medical condition involving the death of tubular epithelial cells that form the renal tubules of the kidneys. ATN presents with acute kidney injury (AKI) and is one of the most common causes of AKI. Common causes of ATN include low blood pressure and use of nephrotoxic drugs. The presence of "muddy brown casts" of epithelial cells found in the urine during urinalysis is pathognomonic for ATN. Management relies on aggressive treatment of the factors that precipitated ATN (e.g. hydration and cessation of the offending drug). Because the tubular cells continually replace themselves, the overall prognosis for ATN is quite good if the cause is corrected, and recovery is likely within 7 to 21 days.
Recovery from renal osteodystrophy has been observed following kidney transplantation. Renal osteodystrophy is a chronic condition with a conventional hemodialysis schedule. Nevertheless, it is important to consider that the broader concept of CKD-MBD, which includes renal osteodystrophy, is not only associated with bone disease and increased risk of fractures but also with cardiovascular calcification, poor quality of life and increased morbidity and mortality in CKD patients (the so-called bone-vascular axis). Actually, bone may now be considered a new endocrine organ at the heart of CKD-MBD.
Up to 27 percent of individuals greater than 50 years of age may have simple renal cysts that cause no symptoms.
Birt-Hogg-Dubé Syndrome patients, families, and caregivers are encouraged to join the NIH Rare Lung Diseases Consortium Contact Registry. This is a privacy protected site that provides up-to-date information for individuals interested in the latest scientific news, trials, and treatments related to rare lung diseases.
Renal failure is defined by functional impairment of the kidney. Renal failure can be acute or chronic, and can be further broken down into categories of pre-renal, intrinsic renal and post-renal.
Pre-renal failure refers to impairment of supply of blood to the functional nephrons including renal artery stenosis. Intrinsic renal diseases are the classic diseases of the kidney including drug toxicity and nephritis. Post-renal failure is outlet obstruction after the kidney, such as a kidney stone or prostatic bladder outlet obstruction.
Renal failure may require medication, dietary and lifestyle modification and dialysis.
Primary renal cell carcinomas as well as metastatic cancers can affect the kidney.
ATN may be classified as either "toxic" or "ischemic". Toxic ATN occurs when the tubular cells are exposed to a toxic substance (nephrotoxic ATN). Ischemic ATN occurs when the tubular cells do not get enough oxygen, a condition that they are highly sensitive and susceptible to, due to their very high metabolism.
In patients with this condition, the central portion of the kidney may be found just inferior to the inferior mesenteric artery because the normal embryologic ascent of the kidneys is arrested by its presence in people with central fusion of the kidneys. Horseshoe kidney is often asymptomatic, though persons affected by this condition may experience nausea, abdominal discomfort, kidney stones and urinary tract infections at greater frequency than those without renal fusion. There is currently no treatment for renal fusion other than symptomatic treatment.
Imaging Findings -
The 2 kidneys on opposite sides of the body with the lower poles fused in midline. Midline or symmetrical fusion (90% of cases).
May be missed on US, therefore pay careful attention to identification of lower poles of kidneys.
Renal long axis medially orientated,
Lower poles with curved configuration, elongation and poorly defined
Isthmus crosses midline anterior to spine and great vessels.
US for diagnosis in utero
IVP followed by CT or scintigraphy for pre-operative assessment
Variant arterial supply -
Bilateral renal arteries,
Inferior mesenteric Artery,
Arteries arising from aorta or common iliac, internal iliac, external iliac or inferior mesenteric arteries.
The lower poles of these kidneys fuse in the midline anterior to the aorta and spine. The isthmus is usually located at L4/5 level between the aorta and IMA.
Nuclear medicine (DMSA) scan confirms horseshoe kidney with fusion of both renal lower poles.
The causes of diseases of the body are common to the urinary tract. Structural and or traumatic change can lead to hemorrhage, functional blockage or inflammation. Colonisation by bacteria, protozoa or fungi can cause infection. Uncontrolled cell growth can cause neoplasia.
For example:
- Urinary tract infections (UTIs), interstitial cystitis
- incontinence (involuntary loss of urine), benign prostatic hyperplasia (where the prostate overgrows), prostatitis (inflammation of the prostate).
- Urinary retention, which is a common complication of benign prostatic hyperplasia (BPH), though it can also be caused by other types of urinary tract obstruction, nerve dysfunction, tethered spinal cord syndrome, constipation, infection and certain medications.
- Transitional cell carcinoma (bladder cancer), renal cell carcinoma (kidney cancer), and prostate cancer are examples of neoplasms affecting the urinary system.
- Urinary tract obstruction
The term "uropathy" refers to a disease of the urinary tract, while "nephropathy" refers to a disease of the kidney.
Hereditary factors have a minor impact on individual susceptibility with immediate relatives of people with RCC having a two to fourfold increased risk of developing the condition. Other genetically linked conditions also increase the risk of RCC, including hereditary papillary renal carcinoma, hereditary leiomyomatosis, Birt–Hogg–Dube syndrome, hyperparathyroidism-jaw tumor syndrome, familial papillary thyroid carcinoma, von Hippel–Lindau disease and sickle cell disease.
The most significant disease affecting risk however is not genetically linked – patients with acquired cystic disease of the kidney requiring dialysis are 30 times more likely than the general population to develop RCC.