Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Some people have a history of exposure to chemotherapy (especially alkylating agents such as melphalan, cyclophosphamide, busulfan, and chlorambucil) or radiation (therapeutic or accidental), or both (e.g., at the time of stem cell transplantation for another disease). Workers in some industries with heavy exposure to hydrocarbons such as the petroleum industry have a slightly higher risk of contracting the disease than the general population. Xylene and benzene exposure has been associated with myelodysplasia. Vietnam veterans exposed to Agent Orange are at risk of developing MDS. A link may exist between the development of MDS "in atomic-bomb survivors 40 to 60 years after radiation exposure" (in this case, referring to people who were in close proximity to the dropping of the atomic bomb in Hiroshima and Nagasaki during World War II).
Children with Down syndrome are susceptible to MDS, and a family history may indicate a hereditary form of sideroblastic anemia or Fanconi anemia.
Although not yet formally incorporated in the generally accepted classification systems, molecular profiling of myelodysplastic syndrome genomes has increased the understanding of prognostic molecular factors for this disease. For example, in low-risk MDS, "IDH1" and "IDH2" mutations are associated with significantly worsened survival.
There have been few individual epidemiological studies of CMML, due to the difficulty in the disease classification. CMML has an estimated incidence of less than 1 per 100,000 persons per year.
The median age of diagnosis is 65–75. CMML has a propensity for males rather than females, at a ratio of 1.5–3:1.
The Düsseldorf score stratifies cases using four categories, giving one point for each; bone marrow blasts ≥5%, LDH >200U/L, haemoglobin ≤9g/dL and a platelet count ≤100,000/uL. A score of 0 indicates a low risk group' 1-2 indicates an intermediate risk group and 3-4 indicates a high risk group. The cumulative 2 year survival of scores 0, 1-2 and 3-4 is 91%, 52% and 9%; and risk of AML transformation is 0%, 19% and 54% respectively.
Refractory cytopenia of childhood (RCC) is a subgroup of myelodysplastic syndrome (MDS), having been added to the World Health Organization classification in 2008. Before then, RCC cases were classified as childhood aplastic anemia. RCC is the most common form of MDS in children and adolescents, accounting for approximately half of all MDS cases.
Symptoms result from underproduction of red blood cells (weakness, pallor, failure to thrive, pica), white blood cells (recurrent or overwhelming infection), and/or platelets (bleeding).
Bone marrow transplant is the only known curative treatment.
Refractory anemia with ring sideroblasts (RARS) is a type of myelodysplastic syndrome. RARS is characterized by 5% or less myeloblasts in bone marrow. RARS is distinguished from refractory anemia by having 15% or more ringed sideroblasts among the erythroid precursors in the bone marrow.
Refractory anemia with excess of blasts (RAEB) is a type of myelodysplastic syndrome with a marrow blast percentage of 5% to 19%.
In MeSH, "Smoldering leukemia" is classified under RAEB.
The prognosis is guarded with an overall mortality of 50%. Poor prognostic factors included HLH associated with malignancy, with half the patients dying by 1.4 months compared to 22.8 months for non-tumour associated HLH patients.
Secondary HLH in some individuals may be self-limited because patients are able to fully recover after having received only supportive medical treatment (i.e., IV immunoglobulin only). However, long-term remission without the use of cytotoxic and immune-suppressive therapies is unlikely in the majority of adults with HLH and in those with involvement of the central nervous system (brain and/or spinal cord).
The most common causes of splenomegaly in developed countries are infectious mononucleosis, splenic infiltration with cancer cells from a hematological malignancy and portal hypertension (most commonly secondary to liver disease, and sarcoidosis). Splenomegaly may also come from bacterial infections, such as syphilis or an infection of the heart's inner lining (endocarditis).
The possible causes of moderate splenomegaly (spleen <1000 g) are many, and include:
The causes of massive splenomegaly (spleen >1000 g) are fewer, and include:
- visceral leishmaniasis (kala-azar)
- chronic myelogenous leukemia
- myelofibrosis
- malaria
- splenic marginal zone lymphoma
If the splenomegaly underlies hypersplenism, a splenectomy is indicated and will correct the hypersplenism. However, the underlying cause of the hypersplenism will most likely remain; consequently, a thorough diagnostic workup is still indicated, as, leukemia, lymphoma and other serious disorders can cause hypersplenism and splenomegaly. After splenectomy, however, patients have an increased risk for infectious diseases.
Patients undergoing splenectomy should be vaccinated against "Haemophilus influenzae", "Streptococcus pneumoniae", and "Meningococcus". They should also receive annual influenza vaccinations. Long-term prophylactic antibiotics may be given in certain cases.
In cases of infectious mononucleosis splenomegaly is a common symptom and health care providers may consider using abdominal ultrasonography to get insight into a person's condition. However, because spleen size varies greatly, ultrasonography is not a valid technique for assessing spleen enlargement and should not be used in typical circumstances or to make routine decisions about fitness for playing sports.
Anti-platelet autoantibodies in a pregnant woman with ITP will attack the patient's own platelets and will also cross the placenta and react against fetal platelets. Therefore, ITP is a significant cause of fetal and neonatal immune thrombocytopenia. Approximately 10% of newborns affected by ITP will have platelet counts <50,000/uL and 1% to 2% will have a risk of intracerebral hemorrhage comparable to infants with neonatal alloimmune thrombocytopenia (NAIT).
No lab test can reliably predict if neonatal thrombocytopenia will occur. The risk of neonatal thrombocytopenia is increased with:
- Mothers with a history of splenectomy for ITP
- Mothers who had a previous infant affected with ITP
- Gestational (maternal) platelet count less than 100,000/uL
It is recommended that pregnant women with thrombocytopenia or a previous diagnosis of ITP should be tested for serum antiplatelet antibodies. A woman with symptomatic thrombocytopenia and an identifiable antiplatelet antibody should be started on therapy for their ITP which may include steroids or IVIG. Fetal blood analysis to determine the platelet count is not generally performed as ITP-induced thrombocytopenia in the fetus is generally less severe than NAIT. Platelet transfusions may be performed in newborns, depending on the degree of thrombocytopenia. It is recommended that neonates be followed with serial platelet counts for the first few days after birth.,
Sideroblastic anemias are often described as responsive or non-responsive in terms of increased hemoglobin levels to pharmacological doses of vitamin B.
1- Congenital: 80% are responsive, though the anemia does not completely resolve.
2- Acquired clonal: 40% are responsive, but the response may be minimal.
3- Acquired reversible: 60% are responsive, but course depends on treatment of the underlying cause.
Severe refractory sideroblastic anemias requiring regular transfusions and/or that undergo leukemic transformation (5-10%) significantly reduce life expectancy.
Erythroid dysplasia is a condition in which immature red blood cells (erythroid cells) in the bone marrow are abnormal in size, shape, organization, and/or number. Erythroid dysplasia may be caused by vitamin deficiency or chemotherapy, or it may be a sign of refractory anemia, which is a myelodysplastic syndrome. Also called erythrodysplasia.
This rare form of leukemia is more common among Asians in comparison to other ethnic groups. It is typically diagnosed in adolescents and young adults, with a slight predominance in males.
Causes of sideroblastic anemia can be categorized into three groups: congenital sideroblastic anemia, acquired clonal sideroblastic anemia, and acquired reversible sideroblastic anemia. All cases involve dysfunctional heme synthesis or processing. This leads to granular deposition of iron in the mitochondria that form a ring around the nucleus of the developing red blood cell. Congenital forms often present with normocytic or microcytic anemia while acquired forms of sideroblastic anemia are often normocytic or macrocytic.
- Congenital sideroblastic anemia
- X-linked sideroblastic anemia: This is the most common congenital cause of sideroblastic anemia and involves a defect in ALAS2, which is involved in the first step of heme synthesis. Although X-linked, approximately one third of patients are women due to skewed X-inactivation (lyonizations).
- Autosomal recessive sideroblastic anemia involves mutations in the SLC25A38 gene. The function of this protein is not fully understood, but it is involved in mitochondrial transport of glycine. Glycine is a substrate for ALAS2 and necessary for heme synthesis. The autosomal recessive form is typically severe in presentation.
- Genetic syndromes: Rarely, sideroblastic anemia may be part of a congenital syndrome and present with associated findings, such as ataxia, myopathy, and pancreatic insufficiency.
- Acquired clonal sideroblastic anemia
- Clonal sideroblastic anemias fall under the broader category of myelodysplastic syndromes (MDS). Three forms exist and include refractory anemia with ringed sideroblasts (RARS), refractory anemia with ringed sideroblasts and thrombocytosis (RARS-T), and refractory cytopenia with multilineage dysplasia and ringed sideroblasts (RCMD-RS). These anemias are associated with increased risk for leukemic evolution.
- Acquired reversible sideroblastic anemia
- Causes include excessive alcohol use (the most common cause of sideroblastic anemia), pyridoxine deficiency, lead poisoning, and copper deficiency. Excess zinc can indirectly cause sideroblastic anemia by decreasing absorption and increasing excretion of copper. Antimicrobials that may lead to sideroblastic anemia include isoniazid, chloramphenicol, cycloserine, and linezolid.
Five genetic subtypes (FHL1, FHL2, FHL3, FHL4, and FHL5) are described, with an estimated prevalence of one in 50,000 and equal gender distribution. Molecular genetic testing for four of the causative genes, PRF1 (FHL2), UNC13D (FHL3), STX11 (FHL4), and STXBP2 (FHL5), is available on a clinical basis. Symptoms of FHL are usually evident within the first few months of life and may even develop "in utero". However, symptomatic presentation throughout childhood and even into young adulthood has been observed in some cases.
The five subtypes of FHL are each associated with a specific gene:
- FHL1: "HPLH1"
- FHL2: "PRF1" (Perforin)
- FHL3: "UNC13D" (Munc13-4)
- FHL4: "STX11" (Syntaxin 11)
- FHL5: "STXBP2" (Syntaxin binding protein 2)/UNC18-2
Nearly half of the cases of type 2 familial hemophagocytic lymphohistiocytosis are due to bi-allelic PRF1 mutations.
Cytopenia is a reduction in the number of mature blood cells. It takes a number of forms:
- Low red blood cell count: resulting in anemia.
- Low white blood cell count: leukopenia or neutropenia. Because neutrophils make up at least half of all white cells, they are almost always low in leukopenia .
- Low platelet count: thrombocytopenia.
- Low granulocyte count: granulocytopenia
- Low red blood cell, white blood cell, and platelet counts: pancytopenia.
Evans syndrome is rare, serious, and has a reported mortality rate of 7%.
It has been observed that there is a risk of developing other autoimmune problems and hypogammaglobulinemia, with recent research finding that 58% of children with Evans syndrome have CD4-/CD8- T cells which is a strong predictor for having autoimmune lymphoproliferative syndrome.
A normal platelet count is considered to be in the range of 150,000–450,000 per microlitre (μl) of blood for most healthy individuals. Hence one may be considered thrombocytopenic below that range, although the threshold for a diagnosis of ITP is not tied to any specific number.
The incidence of ITP is estimated at 50–100 new cases per million per year, with children accounting for half of that amount. At least 70 percent of childhood cases will end up in remission within six months, even without treatment. Moreover, a third of the remaining chronic cases will usually remit during follow-up observation, and another third will end up with only mild thrombocytopenia (defined as a platelet count above 50,000). A number of immune related genes and polymorphisms have been identified as influencing predisposition to ITP, with FCGR3a-V158 allele and KIRDS2/DL2 increasing susceptibility and KIR2DS5 shown to be protective.
ITP is usually chronic in adults and the probability of durable remission is 20–40 percent. The male to female ratio in the adult group varies from 1:1.2 to 1.7 in most age ranges (childhood cases are roughly equal for both genders) and the median age of adults at the diagnosis is 56–60. The ratio between male and female adult cases tends to widen with age. In the United States, the adult chronic population is thought to be approximately 60,000—with women outnumbering men approximately 2 to 1, which has resulted in ITP being designated an orphan disease.
The mortality rate due to chronic ITP varies but tends to be higher relative to the general population for any age range. In a study conducted in Great Britain, it was noted that ITP causes an approximately 60 percent higher rate of mortality compared to gender- and age-matched subjects without ITP. This increased risk of death with ITP is largely concentrated in the middle-aged and elderly. Ninety-six percent of reported ITP-related deaths were individuals 45 years or older. No significant difference was noted in the rate of survival between males and females.
Refractory cytopenia with multilineage dysplasia is a form of myelodysplastic syndrome.
It is abbreviated "RCMD".
Considered a rare to very rare autoimmune disorder it has had few studies with cohorts often less than 30.
Pralatrexate is one compound currently under investigations for the treatment of PTCL.
The prognosis is generally poor. The "RS score" (Richter syndrome score), which is an estimate of the patient's prognosis, is based on the patient's performance status, LDH, platelet count, the size of the lymphoma tumors, and the number of prior therapies already received. Overall, the median survival is between five and eight months. Untreated, RS is invariably fatal.
The Hodgkin's lymphoma variant of Richter's carries a better prognosis than the predominant diffuse large B-cell lymphoma type, but a worse prognosis than a "de novo" case of Hodgkin's.
In the United States, about 500 patients are diagnosed with Richter's transformation each year.