Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The cause of cardiomegaly is not well understood and many cases of cardiomegaly are idiopathic (having no known cause). Prevention of cardiomegaly starts with detection. If a person has a family history of cardiomegaly, one should let one's doctor know so that treatments can be implemented to help prevent worsening of the condition. In addition, prevention includes avoiding certain lifestyle risk factors such as tobacco use and controlling one's high cholesterol, high blood pressure, and diabetes. Non-lifestyle risk factors include family history of cardiomegaly, coronary artery disease (CAD), congenital heart failure, Atherosclerotic disease, valvular heart disease, exposure to cardiac toxins, sleep disordered breathing (such as sleep apnea), sustained cardiac arrhythmias, abnormal electrocardiograms, and cardiomegaly on chest X-ray. Lifestyle factors which can help prevent cardiomegaly include eating a healthy diet, controlling blood pressure, exercise, medications, and not abusing alcohol and cocaine. Current research and the evidence of previous cases link the following (below) as possible causes of cardiomegaly.
The most common causes of Cardiomegaly are congenital (patients are born with the condition based on a genetic inheritance), high blood pressure which can enlarge the left ventricle causing the heart muscle to weaken over time, and coronary artery disease that creates blockages in the heart's blood supply, which can bring on a cardiac infarction (heart attack) leading to tissue death which causes other areas of the heart to work harder, increasing the heart size.
Other possible causes include:
- Heart Valve Disease
- Cardiomyopathy (disease to the heart muscle)
- Pulmonary Hypertension
- Pericardial Effusion (fluid around the heart)
- Thyroid Disorders
- Hemochromatosis (excessive iron in the blood)
- Other rare diseases like Amyloidosis
- Viral infection of the heart
- Pregnancy, with enlarged heart developing around the time of delivery (peripartum cardiomyopathy)
- Kidney disease requiring dialysis
- Alcohol or cocaine abuse
- HIV infection
- Diabetes
There are several potential challenges associated with routine screening for HCM in the United States. First, the U.S. athlete population of 15 million is almost twice as large as Italy's estimated athlete population. Second, these events are rare, with fewer than 100 deaths in the U.S. due to HCM in competitive athletes per year, or about 1 death per 220,000 athletes. Lastly, genetic testing would provide a definitive diagnosis; however, due to the numerous HCM-causing mutations, this method of screening is complex and is not cost-effective. Therefore, genetic testing in the United States is limited to individuals who exhibit clear symptoms of HCM, and their family members. This ensures that the test is not wasted on detecting other causes of ventricular hypertrophy (due to its low sensitivity), and that family members of the individual are educated on the potential risk of being carriers of the mutant gene(s).
Canadian genetic testing guidelines and recommendations for individuals diagnosed with HCM are as follows:
- The main purpose of genetic testing is for screening family members.
- According to the results, at-risk relatives may be encouraged to undergo extensive testing.
- Genetic testing is not meant for confirming a diagnosis.
- If the diagnosed individual has no relatives that are at risk, then genetic testing is not required.
- Genetic testing is not intended for risk assessment or treatment decisions.
- Evidence only supports clinical testing in predicting the progression and risk of developing complications of HCM.
For individuals "suspected" of having HCM:
- Genetic testing is not recommended for determining other causes of left ventricular hypertrophy (such as "athlete's heart", hypertension, and cardiac amyloidosis).
- HCM may be differentiated from other hypertrophy-causing conditions using clinical history and clinical testing.
Due to non-compaction cardiomyopathy being a relatively new disease, its impact on human life expectancy is not very well understood. In a 2005 study that documented the long-term follow-up of 34 patients with NCC, 35% had died at the age of 42 +/- 40 months, with a further 12% having to undergo a heart transplant due to heart failure. However, this study was based upon symptomatic patients referred to a tertiary-care center, and so were suffering from more severe forms of NCC than might be found typically in the population. Sedaghat-Hamedani et al. also showed the clinical course of symptomatic LVNC can be severe. In this study cardiovascular events were significantly more frequent in LVNC patients compared with an age-matched group of patients with non-ischaemic dilated cardiomyopathy (DCM). As NCC is a genetic disease, immediate family members are being tested as a precaution, which is turning up more supposedly healthy people with NCC who are asymptomatic. The long-term prognosis for these people is currently unknown.
Known environmental factors include certain infections during pregnancy such as Rubella, drugs (alcohol, hydantoin, lithium and thalidomide) and maternal illness (diabetes mellitus, phenylketonuria, and systemic lupus erythematosus).
Being overweight or obese increases the risk of congenital heart disease. Additionally, as maternal obesity increases, the risk of heart defects also increases. A distinct physiological mechanism has not been identified to explain the link between maternal obesity and CHD, but both prepregnancy folate deficiency and diabetes have been implicated in some studies.
The true incidence of TIC is unclear. Some studies have noted the incidence of TIC in adults with irregular heart rhythms to range from 8% to 34%. Other studies of patients with atrial fibrillation and left ventricular dysfunction estimate that 25-50% of these study participants have some degree of TIC. TIC has been reported in all age groups.
Although the disease is more common in African-Americans than in Caucasians, it may occur in any patient population.
The Registry has been enrolling new patients from participating institutions that are member of the Congenital Heart Surgeons' Society. Hospitals from across North America continue to join the study group and enroll patients. Over 140 patients with AAOCA have been enrolled by June 2011, making it the largest cohort ever assembled of this anomaly.
Although in many cases no cause is apparent, dilated cardiomyopathy is probably the result of damage to the myocardium produced by a variety of toxic, metabolic, or infectious agents. It may be due to fibrous change of the myocardium from a previous myocardial infarction. Or, it may be the late sequelae of acute viral myocarditis, such as with Coxsackie B virus and other enteroviruses possibly mediated through an immunologic mechanism.
Other causes include:
- Chagas disease, due to "Trypanosoma cruzi". This is the most common infectious cause of dilated cardiomyopathy in Latin America
- Pregnancy. Dilated cardiomyopathy occurs late in gestation or several weeks to months postpartum as a peripartum cardiomyopathy. It is reversible in half of cases.
- Alcohol abuse (alcoholic cardiomyopathy)
- Nonalcoholic toxic insults include administration of certain chemotherapeutic agents, in particular doxorubicin (Adriamycin), and cobalt.
- Thyroid disease
- Inflammatory diseases such as sarcoidosis and connective tissue diseases
- Tachycardia-induced cardiomyopathy
- Muscular dystrophy
- Tuberculosis - 1 to 2% of TB cases.
- Autoimmune mechanisms
Recent studies have shown that those subjects with an extremely high occurrence (several thousands a day) of premature ventricular contractions (extrasystole) can develop dilated cardiomyopathy. In these cases, if the extrasystole are reduced or removed (for example, via ablation therapy) the cardiomyopathy usually regresses.
Anomalous origin of the right coronary artery originating from the pulmonary trunk (ARCAPA) is a rare but potentially fatal anomaly. The goal of surgical therapy is establishment of a physiologic bi-coronary circulation.
Cardiomegaly is a condition affecting the cardiovascular system, specifically the heart. This condition is strongly associated with congestive heart failure. Within the heart, the working fibers of the myocardial tissue increase in size. As the heart works harder the actin and myosin filaments experience less overlap which increases the size of the myocardial fibers. If there is less overlap of the protein filaments actin and myosin within the sarcomeres of muscle fibers, they will not be able to effectively pull on one another. If the heart tissue (walls of left and right ventricle) gets too big and stretches too far, then those filaments cannot effectively pull on one another to shorten the muscle fibers, thus impacting the heart's sliding filament mechanism. If fibers cannot shorten properly, and the heart cannot contract properly, then blood cannot be effectively pumped to the lungs to be re-oxygenated and to the body to deliver oxygen to the working tissues of the body.
The prevalence of ARVD is about 1/10,000 in the general population in the United States, although some studies have suggested that it may be as common as 1/1,000. Recently, 1/200 were found to be carriers of mutations that predispose to ARVC. Based on these findings and other evidence, it is thought that in most patients, additional factors such as other genes, athletic lifestyle, exposure to certain viruses, etc. may be required for a patient to eventually develop signs and symptoms of ARVC. It accounts for up to 17% of all sudden cardiac deaths in the young. In Italy, the prevalence is 40/10,000, making it the most common cause of sudden cardiac death in the young population.
Due to its recent establishment as a diagnosis, and it being unclassified as a cardiomyopathy according to the WHO, it is not fully understood how common the condition is. Some reports suggest that it is in the order of 0.12 cases per 100,000. The low number of reported cases though is due to the lack of any large population studies into the disease and have been based primarily upon patients suffering from advanced heart failure. A similar situation occurred with hypertrophic cardiomyopathy, which was initially considered very rare; however is now thought to occur in one in every 500 people in the population.
Again due to this condition being established as a diagnosis recently, there are ongoing discussions as to its nature, and to various points such as the ratio of compacted to non-compacted at different age stages. However it is universally understood that non-compaction cardiomyopathy will be characterized anatomically by "deep trabeculations in the ventricular wall, which define recesses communicating with the main ventricular chamber. Major clinical correlates include systolic and diastolic dysfunction, associated at times with systemic embolic events."
The cause of congenital heart disease may be genetic, environmental, or a combination of both.
Risk factors for long QT syndrome include the following:
- female sex
- increasing age
- liver or renal impairment
- family history of congenital long QT syndrome
- pre-existing cardiovascular disease
- electrolyte imbalance: especially hypokalemia, hypocalcemia, hypomagnesemia
- concurrent administration of interacting drugs
Anorexia nervosa has been associated with sudden death, possibly due to QT prolongation. It can lead a person to have dangerous electrolyte imbalances, leading to acquired long QT syndrome and can in turn result in sudden cardiac death. This can develop over a prolonged period of time, and the risk is further heightened when feeding resumes after a period of abstaining from consumption. Care must be taken under such circumstances to avoid complications of refeeding syndrome.
Boxer cardiomyopathy is a genetic disease inherited in an autosomal dominant pattern. The presentation in affected offspring is quite variable, suggesting incomplete penetrance. In 2009, a group led by Dr. Kathryn Meurs at Washington State University announced that they had identified one genetic anomaly associated with Boxer cardiomyopathy but as of 2012 there is still debate over the significance of the discovery.
There is a long asymptomatic lead-time in individuals with ARVD. While this is a genetically transmitted disease, individuals in their teens may not have any characteristics of ARVD on screening tests.
Many individuals have symptoms associated with ventricular tachycardia, such as palpitations, light-headedness, or syncope. Others may have symptoms and signs related to right ventricular failure, such as lower extremity edema, or liver congestion with elevated hepatic enzymes.
ARVD is a progressive disease. Over time, the right ventricle becomes more involved, leading to right ventricular failure. The right ventricle will fail before there is left ventricular dysfunction. However, by the time the individual has signs of overt right ventricular failure, there will be histological involvement of the left ventricle. Eventually, the left ventricle will also become involved, leading to bi-ventricular failure. Signs and symptoms of left ventricular failure may become evident, including congestive heart failure, atrial fibrillation, and an increased incidence of thromboembolic events.
Boxer cardiomyopathy (also known as "Boxer arrhythmogenic right ventricular cardiomyopathy") is a disease of the myocardium primarily affecting Boxer dogs. It is characterized by the development of ventricular tachyarrhythmias, resulting in syncope and sudden cardiac death. Myocardial failure and congestive heart failure are uncommon manifestations of the disease.
Studies have shown that patients with Pacemaker syndrome and/or with sick sinus syndrome are at higher risk of developing fatal complications that calls for the patients to be carefully monitored in the ICU. Complications include atrial fibrillation, thrombo-embolic events, and heart failure.
The risk for untreated LQTS patients having events (syncopes or cardiac arrest) can be predicted from their genotype (LQT1-8), gender, and corrected QT interval.
- High risk (> 50%) - QTc > 500 ms, LQT1, LQT2, and LQT3 (males)
- Intermediate risk (30-50%) - QTc > 500 ms, LQT3 (females) or QTc < 500 ms, LQT2 (females) and LQT3
- Low risk (< 30%) - QTc < 500 ms, LQT1 and LQT2 (males)
A 1992 study reported that mortality for symptomatic, untreated patients was 20% within the first year and 50% within the first 10 years after the initial syncope.
The cause is poorly understood. However several risk factors are associated with pacemaker syndrome.
Studies have recently shown that hemopericardium can occur spontaneously in people with essential thrombocythaemia, although this is relatively rare. It is a more common occurrence in patients who have been over-prescribed anticoagulants. Regardless of the underlying cause of the hemopericardium, pericardiocentesis has shown to be the best treatment method for the condition.
Tachycardia-induced cardiomyopathy (TIC) is a disease where prolonged tachycardia (a fast heart rate) or arrhythmia (an irregular heart rhythm) cause an impairment of the myocardium (heart muscle), which can result in heart failure. People with TIC may have symptoms associated with heart failure (e.g. shortness of breath or ankle swelling) and/or symptoms related to the tachycardia or arrhythmia (e.g. palpitations). Though atrial fibrillation is the most common cause of TIC, several tachycardias and arrhythmias have been associated with the disease.
There are no formal diagnostic criteria for TIC. Thus, TIC is typically diagnosed when (1) tests have excluded other causes of cardiomyopathy and (2) there is improvement in myocardial function after treatment of the tachycardia or arrhythmia. Treatment of TIC can involve treating the heart failure as well as the tachycardia or arrhythmia. TIC has a good prognosis with treatment, with most people recovering some to all of their heart function.
The number of cases that occur is unclear. TIC has been reported in all age groups.
The risk of death in individuals with aortic insufficiency, dilated ventricle, normal ejection fraction who are asymptomatic is about 0.2 percent per year. Risk increases if the ejection fraction decreases or if the individual develops symptoms.
Individuals with chronic (severe) aortic regurgitation follow a course that once symptoms appear, surgical intervention is needed. AI is fatal in 10 to 20% of individuals who do not undergo surgery for this condition. Left ventricle dysfunction determines to an extent the outlook for severity of aortic regurgitation cases.
Hypoplastic right heart syndrome is less common than hypoplastic left heart syndrome which occurs in 4 out of every 10,000 births. [3].
This rare anomaly requires prenatal diagnosis since it needs immediate and emergency treatment. Pregnant women whose pregnancy is complicated with this anomaly should be referred to a level 3 hospital with pediatric cardiology and pediatric cardiothoracic surgical team.[3]
It can be associated with aortic stenosis.