Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Links between maternal smoking and TDS are tenuous, but there are stronger associations between maternal alcohol consumption and incidences of cryptorchidism in sons. Smoking does however affect the growth of a fetus, and low birth weight is shown to increase the likelihood of all the disorders encompassed by TDS. Maternal obesity, resulting in gestational diabetes, has also been shown to be a risk factor for impaired testes development and TDS symptoms in sons.
There is increasing evidence that the harmful products of tobacco smoking may damage the testicles and kill sperm, but their effect on male fertility is not clear. Some governments require manufacturers to put warnings on packets. Smoking tobacco increases intake of cadmium, because the tobacco plant absorbs the metal. Cadmium, being chemically similar to zinc, may replace zinc in the DNA polymerase, which plays a critical role in sperm production. Zinc replaced by cadmium in DNA polymerase can be particularly damaging to the testes.
Pre-testicular factors refer to conditions that impede adequate support of the testes and include situations of poor hormonal support and poor general health including:
- Hypogonadotropic hypogonadism due to various causes
- Obesity increases the risk of hypogonadotropic hypogonadism. Animal models indicate that obesity causes leptin insensitivity in the hypothalamus, leading to decreased Kiss1 expression, which, in turn, alters the release of gonadotropin-releasing hormone (GnRH).
- Undiagnosed and untreated coeliac disease (CD). Coeliac men may have reversible infertility. Nevertheless, CD can present with several non-gastrointestinal symptoms that can involve nearly any organ system, even in the absence of gastrointestinal symptoms. Thus, the diagnosis may be missed, leading to a risk of long-term complications. In men, CD can reduce semen quality and cause immature secondary sex characteristics, hypogonadism and hyperprolactinaemia, which causes impotence and loss of libido. The giving of gluten free diet and correction of deficient dietary elements can lead to a return of fertility. It is likely that an effective evaluation for infertility would best include assessment for underlying celiac disease, both in men and women.
- Drugs, alcohol
- Strenuous riding (bicycle riding, horseback riding)
- Medications, including those that affect spermatogenesis such as chemotherapy, anabolic steroids, cimetidine, spironolactone; those that decrease FSH levels such as phenytoin; those that decrease sperm motility such as sulfasalazine and nitrofurantoin
- Genetic abnormalities such as a Robertsonian translocation
Exposure of a male fetus to substances that disrupt hormone systems, particularly chemicals that inhibit the action of androgens (male sex hormones) during the development of the reproductive system, has been shown to cause many of the characteristic TDS disorders. These include environmental estrogens and anti-androgens found in food and water sources that have been contaminated with synthetic hormones and pesticides used in agriculture. In historical cases, medicines given to pregnant women, like diethylstilbestrol (DES), have caused many of the features of TDS in fetuses exposed to this chemical during gestation. The impact of environmental chemicals is well documented in animal models. If a substance affects Sertoli and Leydig cell differentiation (a common feature of TDS disorders) at an early developmental stage, germ cell growth and testosterone production will be impaired. These processes are essential for testes descent and genitalia development, meaning that genital abnormalities like cryptorchidism or hypospadias may be present from birth, and fertility problems and TGCC become apparent during adult life. Severity or number of disorders may therefore be dependent on the timing of the environmental exposure. Environmental factors can act directly, or via epigenetic mechanisms, and it is likely that a genetic susceptibility augmented by environmental factors is the primary cause of TDS.
Idiopathic azoospermia is where there is no known cause of the condition. It may be a result of multiple risk factors, such as age and weight. For example, a review in 2013 came to the result that oligospermia and azoospermia are significantly associated with being overweight (odds ratio 1.1), obese (odds ratio 1.3) and morbidly obese (odds ratio 2.0), but the cause of this is unknown. The review found no significant relation between oligospermia and being underweight.
During embryogenesis, without any external influences for or against, the human reproductive system is intrinsically conditioned to give rise to a female reproductive organisation.
As a result, if a gonad cannot express its sexual identity via its hormones—as in gonadal dysgenesis—then the affected person, no matter whether their chromosomes are XY or XX, will develop external female genitalia. Internal female genitalia, primarily the uterus, may or may not be present depending on the cause of the disorder.
In both sexes, the commencement and progression of puberty require functional gonads that will work in harmony with the hypothalamic and pituitary glands to produce adequate hormones.
For this reason, in gonadal dysgenesis the accompanying hormonal failure also prevents the development of secondary sex characteristics in either sex, resulting in a sexually infantile female appearance and infertility.
Individuals with CAIS are raised as females. They are born phenotypically female and almost always have a heterosexual female gender identity; the incidence of homosexuality in women with CAIS is thought to be less than unaffected women. However, at least two case studies have reported male gender identity in individuals with CAIS.
Reversal of symptoms have been reported in between 15% to 22% of cases. The causes of this reversal are still under investigation but have been reported in both males and females.
Reversal appears to be associated with 14 of the known gene defects linked to KS/CHH. The study suggests no obvious gene defect showing a tendency to allow reversal. There is a suggestion that the TAC3 and TACR3 mutations might allow for a slightly higher chance of reversal, but the numbers involved are too low to confirm this. The ANOS1 mutations appear to be least likely to allow reversal with to date only one recorded instance in medical literature. Even male patients who previous had micro-phallus or cryptorchidism have been shown to undergo reversal of symptoms.
The reversal might not be permanent and remission can occur at any stage; the paper suggests that this could be linked to stress levels. The paper highlighted a reversal case that went into remission but subsequently achieved reversal again, strongly suggesting an environmental link.
Reversal cases have been seen in cases of both KS and normosmic CHH but appear to be less common in cases of KS (where the sense of smell is also affected). A paper published in 2016 agreed with the theory that there is a strong environmental or epigenetic link to the reversal cases. The precise mechanism of reversal is unclear and is an area of active research.
Reversal would be apparent if testicular development was seen in men while on testosterone therapy alone or in women who menstruate or achieved pregnancy while on no treatment. To date there have been no recorded cases of the reversal of anosmia found in Kallmann syndrome cases.
Challenges presented to people affected by this condition include: psychologically coming to terms with the condition, difficulties with sexual function, infertility. Long-term studies indicate that with appropriate medical and psychological treatment, women with CAIS can be satisfied with their sexual function and psychosexual development. CAIS women can lead active lives and expect a normal lifespan.
Gonadectomy at time of diagnosis is the current recommendation for PAIS if presenting with cryptorchidism, due to the high (50%) risk of germ cell malignancy. The risk of malignancy when testes are located intrascrotally is unknown; the current recommendation is to biopsy the testes at puberty, allowing investigation of at least 30 seminiferous tubules, with diagnosis preferably based on OCT3/4 immunohistochemistry, followed by regular examinations. Hormone replacement therapy is required after gonadectomy, and should be modulated over time to replicate the hormone levels naturally present in the body during the various stages of puberty. Artificially induced puberty results in the same, normal development of secondary sexual characteristics, growth spurt, and bone mineral accumulation. Women with PAIS may have a tendency towards bone mineralization deficiency, although this increase is thought to be less than is typically seen in CAIS, and is similarly managed.
The human breast cancer susceptibility gene 2 (BRCA2) is employed in homologous recombinational repair of DNA damages during meiosis. A common single-nucleotide polymorphism of BRCA2 is associated with severe oligospermia.
Men with mild oligospermia (semen concentration of 15 million to 20 million sperm/ml) were studied for an association of sperm DNA damage with life style factors. A significant association was found between sperm DNA damage and factors such as age, obesity and occupational stress.
Estimates for the incidence of androgen insensitivity syndrome are based on a relatively small population size, thus are known to be imprecise. CAIS is estimated to occur in one of every 20,400 46,XY births. A nationwide survey in the Netherlands based on patients with genetic confirmation of the diagnosis estimates that the minimal incidence of CAIS is one in 99,000. The incidence of PAIS is estimated to be one in 130,000. Due to its subtle presentation, MAIS is not typically investigated except in the case of male infertility, thus its true prevalence is unknown.
Prevalence of infertility varies depending on the definition, i.e. on the time span involved in the failure to conceive.
- Infertility rates have increased by 4% since the 1980s, mostly from problems with fecundity due to an increase in age.
- Fertility problems affect one in seven couples in the UK. Most couples (about 84%) who have regular sexual intercourse (that is, every two to three days) and who do not use contraception get pregnant within a year. About 92 out of 100 couples who are trying to get pregnant do so within two years.
- Women become less fertile as they get older. For women aged 35, about 94% who have regular unprotected sexual intercourse get pregnant after three years of trying. For women aged 38, however, only about 77%. The effect of age upon men's fertility is less clear.
- In people going forward for IVF in the UK, roughly half of fertility problems with a diagnosed cause are due to problems with the man, and about half due to problems with the woman. However, about one in five cases of infertility has no clear diagnosed cause.
- In Britain, male factor infertility accounts for 25% of infertile couples, while 25% remain unexplained. 50% are female causes with 25% being due to anovulation and 25% tubal problems/other.
- In Sweden, approximately 10% of couples wanting children are infertile. In approximately one third of these cases the man is the factor, in one third the woman is the factor, and in the remaining third the infertility is a product of factors on both parts.
Factors that can cause male as well as female infertility are:
- DNA damage
- DNA damage reduces fertility in female ovocytes, as caused by smoking, other xenobiotic DNA damaging agents (such as radiation or chemotherapy) or accumulation of the oxidative DNA damage 8-hydroxy-deoxyguanosine
- DNA damage reduces fertility in male sperm, as caused by oxidative DNA damage, smoking, other xenobiotic DNA damaging agents (such as drugs or chemotherapy) or other DNA damaging agents including reactive oxygen species, fever or high testicular temperature
- General factors
- Diabetes mellitus, thyroid disorders, undiagnosed and untreated coeliac disease, adrenal disease
- Hypothalamic-pituitary factors
- Hyperprolactinemia
- Hypopituitarism
- The presence of anti-thyroid antibodies is associated with an increased risk of unexplained subfertility with an odds ratio of 1.5 and 95% confidence interval of 1.1–2.0.
- Environmental factors
- Toxins such as glues, volatile organic solvents or silicones, physical agents, chemical dusts, and pesticides. Tobacco smokers are 60% more likely to be infertile than non-smokers.
German scientists have reported that a virus called Adeno-associated virus might have a role in male infertility, though it is otherwise not harmful. Other diseases such as chlamydia, and gonorrhea can also cause infertility, due to internal scarring (fallopian tube obstruction).
In about 30% of infertile men no causative factor is found for their decrease in sperm concentration or quality by common clinical, instrumental, or laboratory means, and the condition is termed "idiopathic" (unexplained). A number of factors may be involved in the genesis of this condition, including age, infectious agents ( such as "Chlamydia trachomatis"), Y chromosome microdeletions, mitochondrial changes, environmental pollutants, and "subtle" hormonal changes.
A review in 2013 came to the result that oligospermia and azoospermia are significantly associated with being overweight (odds ratio 1.1), obese (odds ratio 1.3) and morbidly obese (odds ratio 2.0), but the cause of this is unknown. It found no significant relation between oligospermia and being underweight.
Approximately 1 in 20,000 individuals with a male appearance have 46,XX testicular disorder.
In posttesticular azoospermia sperm are produced but not ejaculated, a condition that affects 7–51% of azoospermic men. The main cause is a physical obstruction (obstructive azoospermia) of the posttesticular genital tracts. The most common reason is a vasectomy done to induce contraceptive sterility. Other obstructions can be congenital (example agenesis of the vas deferens as seen in certain cases of cystic fibrosis) or acquired, such as ejaculatory duct obstruction for instance by infection.
Ejaculatory disorders include retrograde ejaculation and anejaculation; in these conditions sperm are produced but not expelled.
This condition will occur if there is an absence of both Müllerian inhibiting factor and testosterone. The absence of testosterone will result in regression of the Wolffian ducts; normal male internal reproductive tracts will not develop. The absence of Müllerian inhibiting factor will allow the Müllerian ducts to differentiate into the oviducts and uterus. In sum, this individual will possess female-like internal and external reproductive characteristics, lacking secondary sex characteristics. The genotype may be either 45,XO, 46,XX or 46,XY.
The epidemiology of Kallmann's is not well understood. Individual studies include a 1986 report reviewing medical records in the Sardinian army found a prevalence of 1 in 86,000 men and a 2011 report from Finland found a prevalence of 1:30,000 for males and 1:125,000 for females.
There is 4 to 5:1 ratio of men to women among all people with Kallmann syndrome; in familial Kallmann the ratio is lower, at 2.5 to 1.
Management of AIS is currently limited to symptomatic management; methods to correct a malfunctioning androgen receptor protein that result from an AR gene mutation are not currently available. Areas of management include sex assignment, genitoplasty, gonadectomy in relation to tumor risk, hormone replacement therapy, and genetic and psychological counseling.
In about 80 percent of individuals with 46,XX testicular disorder of sex development, the condition results from an abnormal exchange of genetic material between chromosomes (translocation). This exchange occurs as a random event during the formation of sperm cells in the affected person's father. The translocation causes the SRY gene to be misplaced, almost always onto an X chromosome. If a fetus is conceived from a sperm cell with an X chromosome bearing the SRY gene, it will develop as a male despite not having a Y chromosome. This form of the condition is called SRY-positive 46,XX testicular disorder of sex development.
About 20 percent of those with 46 XX testicular disorder of sex development do not have the SRY gene. This form of the condition is called SRY-negative 46,XX testicular disorder of sex development. The cause of the disorder in these individuals is often unknown, although changes affecting other genes have been identified. Individuals with SRY-negative 46,XX testicular disorder of sex development are more likely to have ambiguous genitalia than are people with the SRY-positive form.
Infertility observed in adult males with congenital adrenal hyperplasia (CAH) has been associated with testicular adrenal rest tumors (TART) that may originate during childhood. TART in prepubertal males with classic CAH could be found during childhood (20%). Martinez-Aguayo et al. reported differences in markers of gonadal function in a subgroup of patients, especially in those with inadequate control.
Management of AIS is currently limited to symptomatic management; no method is currently available to correct the malfunctioning androgen receptor proteins produced by "AR" gene mutations. Areas of management include sex assignment, genitoplasty, gonadectomy in relation to tumor risk, hormone replacement therapy, genetic counseling, and psychological counseling.
While hyperandrogenism in women is caused by external factors, it can also appear from natural causes.
Sex determination and differentiation is generalized with chromosomal sex during fertilization. At early stages, phenotypic sex does not match chromosomal sex—until later during intrauterine development, sexual maturation is reached. During intrauterine development, females change to male with the testes moving down from a blind vaginal pouch with a developing scrotum, as well as a penis which initially resembled a clitoris. What seems like a female phenotype is altered by increased testosterone levels secretion.
Mutations affecting the androgen receptor (AR) gene may cause either complete or partial androgen insensitivity syndrome. Androgen, a hormone used to describe a group of sex steroid hormones, is responsible for affecting male pseudohermaphroditism. The differentiation of the fetus as male takes place during the sixth or seventh week of gestation. The development is directed by the testicular determining factor: the gene SRY (sex determining region on Y chromosome). Throughout 9th to 13th week, the development of a male genitalia is dependent upon the conversion of testosterone to the more potent androgen by the action of 5α-reductase within the target tissues of the genitalia. A type of internal male pseudohermaphroditism is Persistent Müllerian duct syndrome, which is developed through synthesis of Müllerian-inhibiting factor defects. In such instances, duct derivatives are now in 46XY males—this includes the uterus, fallopian tubes, and upper vagina. These individuals with a hernia sac and bowel loops were found with duct derivatives as well as testes.
A study on a male pseudohermaphrodite kitten showed there was a combination of gastrointestinal and urogenital congenital abnormalities. It was confirmed to have type II atresia ani and rectovaginal fistula that is associated with male pseudohermaphroditism.