Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Cardiovascular disease affects low- and middle-income countries even more than high-income countries. There is relatively little information regarding social patterns of cardiovascular disease within low- and middle-income countries, but within high-income countries low income and low educational status are consistently associated with greater risk of cardiovascular disease. Policies that have resulted in increased socio-economic inequalities have been associated with greater subsequent socio-economic differences in cardiovascular disease implying a cause and effect relationship. Psychosocial factors, environmental exposures, health behaviours, and health-care access and quality contribute to socio-economic differentials in cardiovascular disease.
Particulate matter has been studied for its short- and long-term exposure effects on cardiovascular disease. Currently, PM is the major focus, in which gradients are used to determine CVD risk. For every 10 μg/m of PM long-term exposure, there was an estimated 8–18% CVD mortality risk. Women had a higher relative risk (RR) (1.42) for PM induced coronary artery disease than men (0.90) did. Overall, long-term PM exposure increased rate of atherosclerosis and inflammation. In regards to short-term exposure (2 hours), every 25 μg/m of PM resulted in a 48% increase of CVD mortality risk. In addition, after only 5 days of exposure, a rise in systolic (2.8 mmHg) and diastolic (2.7 mmHg) blood pressure occurred for every 10.5 μg/m of PM. Other research has implicated PM in irregular heart rhythm, reduced heart rate variability (decreased vagal tone), and most notably heart failure. PM is also linked to carotid artery thickening and increased risk of acute myocardial infarction.
Coronary artery disease has a number of well determined risk factors. These include high blood pressure, smoking, diabetes, lack of exercise, obesity, high blood cholesterol, poor diet, depression, family history, and excessive alcohol. About half of cases are linked to genetics. Smoking and obesity are associated with about 36% and 20% of cases, respectively. Lack of exercise has been linked to 7–12% of cases. Exposure to the herbicide Agent orange may increase risk. Both rheumatoid arthritis and systemic lupus erythematosus are independent risk factors as well.
Job stress appears to play a minor role accounting for about 3% of cases.
In one study, women who were free of stress from work life saw an increase in the diameter of their blood vessels, leading to decreased progression of atherosclerosis. In contrast, women who had high levels of work-related stress experienced a decrease in the diameter of their blood vessels and significantly increased disease progression. Having a type A behavior pattern, a group of personality characteristics including time urgency, competitiveness, hostility, and impatience is linked to an increased risk of coronary disease.
Risk factors contributing to PAD are the same as those for atherosclerosis:
- Smoking – tobacco use in any form is the single most important modifiable cause of PAD internationally. Smokers have up to a tenfold increase in relative risk for PAD in a dose-response relationship. Exposure to second-hand smoke from environmental exposure has also been shown to promote changes in blood vessel lining (endothelium) which is a precursor to atherosclerosis. Smokers are 2 to 3 times more likely to have lower extremity peripheral arterial disease than coronary artery disease. More than 80%-90% of patients with lower extremity peripheral arterial disease are current or former smokers. The risk of PAD increases with the number of cigarettes smoked per day and the number of years smoked.
- Diabetes mellitus – causes between two and four times increased risk of PAD by causing endothelial and smooth muscle cell dysfunction in peripheral arteries. The risk of developing lower extremity peripheral arterial disease is proportional to the severity and duration of diabetes.
- Dyslipidemia – a high level of low-density lipoprotein (LDL cholesterol) and a low level of high-density lipoprotein (HDL cholesterol) in the blood) - elevation of total cholesterol, LDL cholesterol, and triglyceride levels each have been correlated with accelerated PAD. Correction of dyslipidemia by diet and/or medication is associated with a major improvement in rates of heart attack and stroke.
- Hypertension – elevated blood pressure is correlated with an increase in the risk of developing PAD, as well as in associated coronary and cerebrovascular events (heart attack and stroke). Hypertension increased the risk of intermittent claudication 2.5- to 4-fold in men and women, respectively.
- Risk of PAD also increases in individuals who are over the age of 50, male, obese, heart attack, or stroke or with a family history of vascular disease.
- Other risk factors which are being studied include levels of various inflammatory mediators such as C-reactive protein, fibrinogen, hyperviscosity, hypercoagulable state.
Peripheral arterial disease is more common in the following populations of people:
- All people who have leg symptoms with exertion (suggestive of claudication) or ischemic rest pain.
- All people aged 65 years and over regardless of risk factor status.
- All people between the age of 50 to 69 and who have a cardiovascular risk factor (particularly diabetes or smoking).
- Age less than 50 years, with diabetes and one other atherosclerosis risk factor (smoking, dyslipidemia, hypertension, or hyperhomocysteinemia).
- Individuals with an abnormal lower extremity pulse examination.
- Those with known atherosclerotic coronary, carotid, or renal artery disease.
- All people with a Framingham risk score 10%-20%
- All people who have previously experienced chest pain
Dietary cholesterol does not appear to have a significant effect on blood cholesterol and thus recommendations about its consumption may not be needed. Saturated fat is still a concern.
In 2011, coronary atherosclerosis was one of the top ten most expensive conditions seen during inpatient hospitalizations in the U.S., with aggregate inpatient hospital costs of $10.4 billion.
Hypertension or high blood pressure affects at least 4 billion people worldwide. Hypertensive heart disease is only one of several diseases attributable to high blood pressure. Other diseases caused by high blood pressure include ischemic heart disease, stroke, peripheral arterial disease, aneurysms and kidney disease. Hypertension increases the risk of heart failure by two or three-fold and probably accounts for about 25% of all cases of heart failure. In addition, hypertension precedes heart failure in 90% of cases, and the majority of heart failure in the elderly may be attributable to hypertension. Hypertensive heart disease was estimated to be responsible for 1.0 million deaths worldwide in 2004 (or approximately 1.7% of all deaths globally), and was ranked 13th in the leading global causes of death for all ages. A world map shows the estimated disability-adjusted life years per 100,000 inhabitants lost due to hypertensive heart disease in 2004.
The relation between dietary fat and atherosclerosis is controversial. Writing in "Science", Gary Taubes detailed that political considerations played into the recommendations of government bodies. The USDA, in its food pyramid, promotes a diet of about 64% carbohydrates from total calories. The American Heart Association, the American Diabetes Association and the National Cholesterol Education Program make similar recommendations. In contrast, Prof Walter Willett (Harvard School of Public Health, PI of the second Nurses' Health Study) recommends much higher levels of fat, especially of monounsaturated and polyunsaturated fat. These differing views reach a consensus, though, against consumption of trans fats.
The role of dietary oxidized fats/lipid peroxidation (rancid fats) in humans is not clear.
Laboratory animals fed rancid fats develop atherosclerosis. Rats fed DHA-containing oils experienced marked disruptions to their antioxidant systems, and accumulated significant amounts of phospholipid hydroperoxide in their blood, livers and kidneys.
Rabbits fed atherogenic diets containing various oils were found to undergo the greatest amount of oxidative susceptibility of LDL via polyunsaturated oils. In another study, rabbits fed heated soybean oil "grossly induced atherosclerosis and marked liver damage were histologically and clinically demonstrated." However, Fred Kummerow claims that it is not dietary cholesterol, but oxysterols, or oxidized cholesterols, from fried foods and smoking, that are the culprit.
Rancid fats and oils taste very bad even in small amounts, so people avoid eating them.
It is very difficult to measure or estimate the actual human consumption of these substances. Highly unsaturated omega-3 rich oils such as fish oil are being sold in pill form so that the taste of oxidized or rancid fat is not apparent. The health food industry's dietary supplements are self regulated and outside of FDA regulations. To properly protect unsaturated fats from oxidation, it is best to keep them cool and in oxygen free environments.
A 2017 SBU report found evidence that workplace exposure to silica dust, engine exhaust or welding fumes is associated with heart disease. Associations also exist for exposure to arsenic, benzopyrenes, lead, dynamite, carbon disulphide, carbon monoxide, metalworking fluids and occupational exposure to tobacco smoke. Working with the electrolytic production of aluminium or the production of paper when the sulphate pulping process is used is associated with heart disease. An association was also found between heart disease and exposure to compounds which are no longer permitted in certain work environments, such as phenoxy acids containing TCDD(dioxin) or asbestos.
Workplace exposure to silica dust or asbestos is also associated with pulmonary heart disease. There is evidence that workplace exposure to lead, carbon disulphide, phenoxyacids containing TCDD, as well as working in an environment where aluminium is being electrolytically produced, is associated with stroke.
Treatment varies with the type of vascular disease; in the case of renal artery disease, information from a meta-analysis indicated that balloon angioplasty results in improvement of diastolic blood pressure and a reduction in antihypertensive drug requirements. In the case of peripheral artery disease, preventing complications is important; without treatment, sores or gangrene (tissue death) may occur. Among the treatments are:
- Quitting smoking
- Lowering cholesterol
- Lower blood pressure
- Lower blood glucose
- Physical activity
There are several types of vascular disease, (which is a subgroup of cardiovascular disease), the signs and symptoms depend on which type, among them are:
- Erythromelalgia - a rare peripheral vascular disease where syndromes includes burning pain, increased temperature, erythema and swelling, of mainly the hands and feet are affected.
- Peripheral artery disease – happens when atheromatous plaques build up in the arteries that supply blood to the arms and legs, plaque causes the arteries to narrow or become blocked.
- Renal artery stenosis - is the narrowing of renal arteries that carry blood to the kidneys from the aorta.
- Buerger's disease – is due to small blood vessels that inflame and swell, vessels then narrow or are blocked by blood clots.
- Raynaud's disease – a rare peripheral vascular disorder of constriction of the peripheral blood vessels, in the fingers and toes when the person is cold.
- Disseminated intravascular coagulation – a widespread activation of clotting in the smaller blood vessels.
- Cerebrovascular disease–a group of vascular diseases that affect brain function.
A 2015 SBU-report including a systematic review of non-chemical riskfactors for occupation cardiovascular disease found an association between certain occupational risk factors and developing cardiovascular disease in those:
- With mentally stressfull work with a lack of control of their own working situation — with a effort-reward imbalance
- Who experience low social support at work; who experience injustice or experience insufficient opportunities for personal development; or those who experience job insecurity
- Those who work night schedules; or have long working weeks
- Those who are exposed to noise
Specifically the risk of stroke was also increased by:
- Exposure to ionizing radiation
Hypertension develops more often in those who experience job strain and who have shift-work. Differences between women and men in risk are small, however men risk suffering and dieing of heart attacks or stroke twice as often as women during working life.
There are more women than men with hypertension, and, although men develop hypertension earlier in life, hypertension in women is less well controlled. The consequences of high blood pressure in women are a major public health problem and hypertension is a more important contributory factor in heart attacks in women than men. Until recently women have been under-represented in clinical trials in hypertension and heart failure. Nevertheless, there is some evidence that the effectiveness of antihypertensive drugs differs between men and women and that treatment for heart failure may be less effective in women.
Kidney failure is very common in patients suffering from congestive heart failure. It was shown that kidney failure complicates one-third of all admissions for heart failure, which is the leading cause of hospitalization in the United States among adults over 65 years old. These complications led to longer hospital stay, higher mortality, and greater chance for readmission. Another study found that 39% of patients in NYHA class 4 and 31% of patients in NYHA class 3 had severely impaired kidney function. Similarly, kidney failure can have deleterious effects on cardiovascular function. It was estimated that about 44% of deaths in patients with end-stage kidney failure (ESKF) are due to cardiovascular disease.
Non-occlusive disease has a poor prognosis with survival rate between 40-50%.
The following risk factors have been associated with increased incidence of CRS.
- Older age
- Comorbid conditions (diabetes mellitus, uncontrolled hypertension, anemia)
- Drugs (anti-inflammatory agents, diuretics, ACE inhibitors, ARBs)
- History of heart failure or impaired left ventricular ejection fraction
- Prior myocardial infarction
- New York Heart Association (NYHA) functional class
- Elevated cardiac troponins
- Chronic kidney disease (reduced eGFR, elevated BUN, creatinine, or cystatin)
In 2008, the US had an estimate of 16 million atherosclerotic heart disease and 5.8 million strokes. Cardiovascular diseases that were caused by arteriosclerosis also caused almost 812,000 deaths in 2008, more than any other cause, including cancer. About 1.2 million Americans are predicted to have a heart attack each year.
Perioperative PION patients have a higher prevalence of cardiovascular risk factors than in the general population. Documented cardiovascular risks in people affected by perioperative PION include high blood pressure, diabetes mellitus, high levels of cholesterol in the blood, tobacco use, abnormal heart rhythms, stroke, and obesity. Men are also noted to be at higher risk, which is in accordance with the trend, as men are at higher risk of cardiovascular disease. These cardiovascular risks all interfere with adequate blood flow, and also may suggest a contributory role of defective vascular autoregulation.
Patients with ESKD are at increased overall risk for cancer. This risk is particularly high in younger patients and gradually diminishes with age. Medical specialty professional organizations recommend that physicians do not perform routine cancer screening in patients with limited life expectancies due to ESKD because evidence does not show that such tests lead to improved patient outcomes.
Physicians have theorized that the syndrome is caused by tiny debris and air bubbles (microemboli) that enter the brain via cardiopulmonary bypass. Surgeons attempt to minimize time spent on bypass to decrease postoperative deficits; studies have shown increased bypass time is associated with increased incidence and severity of postperfusion syndrome and mortality. It is unclear how increases in bypass time would result in such increases if pre-existing cardiovascular and cerebrovascular conditions are the principal causative mechanisms of postperfusion syndrome.
The prevalence of Mönckeberg's arteriosclerosis increases with age and is more frequent in diabetes mellitus, chronic kidney disease, systemic lupus erythematosus, chronic inflammatory conditions, hypervitaminosis D and rare genetic disorders, such as Keutel syndrome. The prevalence of Monckeberg's arteriosclerosis in the general population has been estimated as 1.5; however the validity of this criterion is questionable.
Arteriosclerosis is the thickening, hardening and loss of elasticity of the walls of arteries. This process gradually restricts the blood flow to one's organs and tissues and can lead to severe health risks brought on by atherosclerosis, which is a specific form of arteriosclerosis caused by the buildup of fatty plaques, cholesterol, and some other substances in and on the artery walls.
Genetic contributions are usually due to the additive effects of multiple genes, though occasionally may be due to a single gene defect such as in the case of familial hypercholesterolaemia.
Genetic abnormalities are in some cases completely responsible for hypercholesterolemia, such as in familial hypercholesterolemia, where one or more genetic mutations in the autosomal dominant APOB gene exist, the autosomal recessive "LDLRAP1" gene, autosomal dominant familial hypercholesterolemia ("HCHOLA3") variant of the "PCSK9" gene, or the LDL receptor gene. Familial hypercholesterolemia affects about one in five hundred people.
Arterial stiffness occurs as a consequence of biological aging and arteriosclerosis. Inflammation plays a major role in arteriosclerosis development, and consequently it is a major contributor in large arteries stiffening. Increased arterial stiffness is associated with an increased risk of cardiovascular events such as myocardial infarction and stroke, the two leading causes of death in the developed world. The World Health Organisation predicts that in 2010, cardiovascular disease will also be the leading killer in the developing world and represents a major global health problem.
Several degenerative changes that occur with age in the walls of large elastic arteries are thought to contribute to increased stiffening over time, including the mechanical fraying of lamellar elastin structures within the wall due to repeated cycles of mechanical stress; changes in the kind and increases in content of arterial collagen proteins, partially as a compensatory mechanism against the loss of arterial elastin and partially due to fibrosis; and crosslinking of adjacent collagen fibers by advanced glycation endproducts (AGEs).