Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Anti-platelet autoantibodies in a pregnant woman with ITP will attack the patient's own platelets and will also cross the placenta and react against fetal platelets. Therefore, ITP is a significant cause of fetal and neonatal immune thrombocytopenia. Approximately 10% of newborns affected by ITP will have platelet counts <50,000/uL and 1% to 2% will have a risk of intracerebral hemorrhage comparable to infants with neonatal alloimmune thrombocytopenia (NAIT).
No lab test can reliably predict if neonatal thrombocytopenia will occur. The risk of neonatal thrombocytopenia is increased with:
- Mothers with a history of splenectomy for ITP
- Mothers who had a previous infant affected with ITP
- Gestational (maternal) platelet count less than 100,000/uL
It is recommended that pregnant women with thrombocytopenia or a previous diagnosis of ITP should be tested for serum antiplatelet antibodies. A woman with symptomatic thrombocytopenia and an identifiable antiplatelet antibody should be started on therapy for their ITP which may include steroids or IVIG. Fetal blood analysis to determine the platelet count is not generally performed as ITP-induced thrombocytopenia in the fetus is generally less severe than NAIT. Platelet transfusions may be performed in newborns, depending on the degree of thrombocytopenia. It is recommended that neonates be followed with serial platelet counts for the first few days after birth.,
Thrombocytopenia affects a few percent of newborns, and its prevalence in neonatal intensive care units (NICU) is high. Normally, it is mild and resolves without consequences. Most cases affect preterm birth infants and result from placental insufficiency and/or fetal hypoxia. Other causes, such as alloimmunity, genetics, autoimmunity, and infection, are less frequent.
Thrombocytopenia that starts after the first 72 hours since birth is often the result of underlying sepsis or necrotizing enterocolitis (NEC). In the case of infection, PCR tests may be useful for rapid pathogen identification and detection of antibiotic resistance genes. Possible pathogens include viruses (e.g. Cytomegalovirus (CMV), rubella virus, HIV), bacteria (e.g. "Staphylococcus sp.", "Enterococcus sp.", "Streptococcus agalactiae" (GBS), "Listeria monocytogenes", "Escherichia coli", "Haemophilus influenzae", "Klebsiella pneumoniae", "Pseudomonas aeruginosa", "Yersinia enterocolitica"), fungi (e.g. "Candida sp."), and "Toxoplasma gondii". The severity of thrombocytopenia may be correlated with pathogen type; some research indicates that the most severe cases are related to fungal or gram-negative bacterial infection. The pathogen may be transmitted during or before birth, by breast feeding, or during transfusion. Interleukin-11 is being investigated as a drug for managing thrombocytopenia, especially in cases of sepsis or necrotizing enterocolitis (NEC).
The following medications can induce thrombocytopenia through direct myelosuppression.
- Valproic acid
- Methotrexate
- Carboplatin
- Interferon
- Isotretinoin
- Panobinostat
- H blockers and proton-pump inhibitors
A normal platelet count is considered to be in the range of 150,000–450,000 per microlitre (μl) of blood for most healthy individuals. Hence one may be considered thrombocytopenic below that range, although the threshold for a diagnosis of ITP is not tied to any specific number.
The incidence of ITP is estimated at 50–100 new cases per million per year, with children accounting for half of that amount. At least 70 percent of childhood cases will end up in remission within six months, even without treatment. Moreover, a third of the remaining chronic cases will usually remit during follow-up observation, and another third will end up with only mild thrombocytopenia (defined as a platelet count above 50,000). A number of immune related genes and polymorphisms have been identified as influencing predisposition to ITP, with FCGR3a-V158 allele and KIRDS2/DL2 increasing susceptibility and KIR2DS5 shown to be protective.
ITP is usually chronic in adults and the probability of durable remission is 20–40 percent. The male to female ratio in the adult group varies from 1:1.2 to 1.7 in most age ranges (childhood cases are roughly equal for both genders) and the median age of adults at the diagnosis is 56–60. The ratio between male and female adult cases tends to widen with age. In the United States, the adult chronic population is thought to be approximately 60,000—with women outnumbering men approximately 2 to 1, which has resulted in ITP being designated an orphan disease.
The mortality rate due to chronic ITP varies but tends to be higher relative to the general population for any age range. In a study conducted in Great Britain, it was noted that ITP causes an approximately 60 percent higher rate of mortality compared to gender- and age-matched subjects without ITP. This increased risk of death with ITP is largely concentrated in the middle-aged and elderly. Ninety-six percent of reported ITP-related deaths were individuals 45 years or older. No significant difference was noted in the rate of survival between males and females.
Secondary TTP is diagnosed when the patient's history mentions one of the known features associated with TTP. It comprises about 40% of all cases of TTP. Predisposing factors are:
- Cancer
- Bone marrow transplantation
- Pregnancy
- Medication use:
- Antiviral drugs (acyclovir)
- Certain chemotherapy medications such as gemcitabine and mitomycin C
- Quinine
- Oxymorphone
- Quetiapine
- Bevacizumab
- Sunitinib
- Platelet aggregation inhibitors (ticlopidine, clopidogrel, and prasugrel)
- Immunosuppressants (ciclosporin, mitomycin, tacrolimus/FK506, interferon-α)
- Hormone altering drugs (estrogens, contraceptives, hormone replacement therapy)
- HIV-1 infection
The mechanism of secondary TTP is poorly understood, as ADAMTS13 activity is generally not as depressed as in idiopathic TTP, and inhibitors cannot be detected. Probable etiology may involve, at least in some cases, endothelial damage, although the formation of thrombi resulting in vessel occlusion may not be essential in the pathogenesis of secondary TTP. These factors may also be considered a form of secondary aHUS; patients presenting with these features are, therefore, potential candidates for anticomplement therapy.
The mortality rate is around 95% for untreated cases, but the prognosis is reasonably favorable (80–90% survival) for patients with idiopathic TTP diagnosed and treated early with plasmapheresis.
The exact number of cases of HIT in the general population is unknown. What is known is that women receiving heparin after a recent surgical procedure, particularly cardiothoracic surgery, have a higher risk, while the risk is very low in women just before and after giving birth. Some studies have shown that HIT is less common in those receiving low molecular weight heparin.
Prognosis varies depending on the underlying disorder, and the extent of the intravascular thrombosis (clotting). The prognosis for those with DIC, regardless of cause, is often grim: Between 20% and 50% of patients will die. DIC with sepsis (infection) has a significantly higher rate of death than DIC associated with trauma.
DIC is observed in approximately 1% of academic hospital admissions. DIC occurs at higher rates in people with bacterial sepsis (83%), severe trauma (31%), and cancer (6.8%).
Purpura fulminans is rare and most commonly occurs in babies and small children but can also be a rare manifestation in adults when it is associated with severe infections. For example, Meningococcal septicaemia is complicated by purpura fulminans in 10–20% of cases among children. Purpura fulminans associated with congenital (inherited) protein C deficiency occurs in 1:500,000–1,000,000 live births.
The amount of fresh frozen plasma required to reverse disseminated intravascular coagulation associated with purpura fulminans may lead to complications of fluid overload and death, especially in neonates, such as transfusion-related acute lung injury. Exposure to multiple plasma donors over time increases the cumulative risk for transfusion-associated viral infection and allergic reaction to donor proteins found in fresh frozen plasma.
Allergic reactions and alloantibody formation are also potential complications, as with any protein replacement therapy.
Concomitant warfarin therapy in subjects with congenital protein C deficiency is associated with an increased risk of warfarin skin necrosis.
Many of the further classifications of Giant Platelet Disorder occur as a result of being genetically passed down through families as an autosomal recessive disorder, such as in Bernard-Soulier syndrome and Grey Platelet syndrome. To get this disorder both of the parents have to have it for it to be passed down to the child. It has to be transmitted in an autosomal recessive pattern. There chromosome number is 17.
There has been no general recommendation for treatment of patients with Giant Platelet Disorders, as there are many different specific classifications to further categorize this disorder which each need differing treatments. Platelet transfusion is the main treatment for people presenting with bleeding symptoms. There have been experiments with DDAVP (1-deamino-8-arginine vasopressin) and splenectomy on people with Giant platelet disorders with mixed results, making this type of treatment contentious.
Individuals experiencing episodic bleeding as a result of congenital dysfibrinogenemia should be treated at a center specialized in treating hemophilia. They should avoid all medications that interfere with normal platelet function. During bleeding episodes, treatment with fibrinogen concentrates or in emergencies or when these concentrates are unavailable, infusions of fresh frozen plasma and/or cryoprecipitate (a fibrinogen-rich plasma fraction) to maintain fibrinogen activity levels >1 gram/liter. Tranexamic acid or fibrinogen concentrates are recommended for prophylactic treatment prior to minor surgery while fibrinogen concentrates are recommended prior to major surgery with fibrinogen concentrates usage seeking to maintain fibrinogen activity levels at >1 gram/liter. Women undergoing vaginal or Cesarean child birth should be treated at a hemophilia center with fibrinogen concentrates to maintain fibrinogen activity levels at 1.5 gram/liter. The latter individuals require careful observation for bleeding during their post-partum periods.
Individuals experiencing episodic thrombosis as a result of congenital dysfibrinogenemia should also be treated at a center specialized in treating hemophilia using antithrombotic agents. They should be instructed on antithrombotic behavioral methods fur use in high risk situations such as long car rides and air flights. Venous thrombosis should be treated with low molecular weight heparin for a period that depends on personal and family history of thrombosis events. Prophylactic treatment prior to minor surgery should avoid fibrinogen supplementation and use prophylactic anticoagulation measures; prior to major surgery, fibrinogen supplementation should be used only if serious bleeding occurs; otherwise, prophylactic anticoagulation measures are recommended.
Treatment of asymptomatic congenital dysfibrinogenemia depends in part on the expectations of developing bleeding and/or thrombotic complications as estimated based on the history of family members with the disorder and, where available, determination of the exact mutation causing the disorder plus the propensity of the particular mutation type to develop these complications. In general, individuals with this disorder require regular follow-up and multidiscipline management prior to surgery, pregnancy, and giving childbirth. Women with the disorder appear to have an increased rate of miscarriages and all individuals with fibrinogen activity in clotting tests below 0.5 grams/liter are prone to bleeding and spontaneous abortions. Women with multiple miscarriages and individuals with excessively low fibrinogen activity levels should be considered for prophylaxis therapy with fibrinogen replacement during pregnancy, delivery, and/or surgery.
The most rapidly effective treatment in infants with severe hemorrhage and/or severe thrombocytopenia (30,000 μL) an infusion of (1 g/kg/day for two days) in the infant has been shown to rapidly increase platelet count and reduce the risk of related injury.
After a first affected pregnancy, if a mother has plans for a subsequent pregnancy, then the mother and father should be typed for platelet antigens and the mother screened for alloantibodies. Testing is available through reference laboratories (such as ). testing of the father can be used to determine zygosiity of the involved antigen and therefore risk to future pregnancies (if homozygous for the antigen, all subsequent pregnancies will be affected, if heterozygous, there is an approximate 50% risk to each subsequent pregnancy). During subsequent pregnancies, the genotype of the fetus can also be determined using amniotic fluid analysis or maternal blood as early as 18 weeks gestation to definitively determine the risk to the fetus.
Immune thrombocytopenic purpura (), sometimes called idiopathic thrombocytopenic purpura is a condition in which autoantibodies are directed against a patient's own platelets, causing platelet destruction and thrombocytopenia. Anti-platelet autoantibodies in a pregnant woman with immune thrombocytopenic purpura will attack the patient's own platelets and will also cross the placenta and react against fetal platelets. Therefore, is a significant cause of fetal and neonatal immune thrombocytopenia. Approximately 10% of newborns affected by will have platelet counts <50,000 μL and 1% to 2% will have a risk of intracerebral hemorrhage comparable to infants with .
Mothers with thrombocytopenia or a previous diagnosis of should be tested for serum antiplatelet antibodies. A woman with symptomatic thrombocytopenia and an identifiable antiplatelet antibody should be started on therapy for their which may include steroids or . Fetal blood analysis to determine the platelet count is not generally performed as -induced thrombocytopenia in the fetus is generally less severe than . Platelet transfusions may be performed in newborns, depending on the degree of thrombocytopenia.
Glanzmann's thrombasthenia can be inherited in an autosomal recessive manner or acquired as an autoimmune disorder.
The bleeding tendency in Glanzmann's thrombasthenia is variable, some individuals having minimal bruising, while others have frequent, severe, potentially fatal hemorrhages. Moreover, platelet αβ levels correlate poorly with hemorrhagic severity, as virtually undetectable αβ levels can correlate with negligible bleeding symptoms, and 10%–15% levels can correlate with severe hemorrhage. Unidentified factors other than the platelet defect itself may have important roles.
Like most aspects of the disorder, life expectancy varies with severity and adequate treatment. People with severe haemophilia who don't receive adequate, modern treatment have greatly shortened lifespans and often do not reach maturity. Prior to the 1960s when effective treatment became available, average life expectancy was only 11 years. By the 1980s the life span of the average haemophiliac receiving appropriate treatment was 50–60 years. Today with appropriate treatment, males with haemophilia typically have a near normal quality of life with an average lifespan approximately 10 years shorter than an unaffected male.
Since the 1980s the primary leading cause of death of people with severe haemophilia has shifted from haemorrhage to HIV/AIDS acquired through treatment with contaminated blood products. The second leading cause of death related to severe haemophilia complications is intracranial haemorrhage which today accounts for one third of all deaths of people with haemophilia. Two other major causes of death include hepatitis infections causing cirrhosis and obstruction of air or blood flow due to soft tissue haemorrhage.
Therapy involves both preventive measures and treatment of specific bleeding episodes.
- Dental hygiene lessens gingival bleeding
- Avoidance of antiplatelet agents such as aspirin and other anti-inflammatory drugs (NSAIDs) such as ibuprofen and naproxen, and anticoagulants
- Iron or folate supplementation may be necessary if excessive or prolonged bleeding has caused anemia
- Hepatitis B vaccine
- Antifibrinolytic drugs such as tranexamic acid or ε-aminocaproic acid (Amicar)
- Desmopressin (DDAVP) does not normalize the bleeding time in Glanzmann's thrombasthenia but anecdotally improves hemostasis
- Hormonal contraceptives to control excessive menstrual bleeding
- Topical agents such as gelfoam, fibrin sealants, polyethylene glycol polymers, custom dental splints
- Platelet transfusions (only if bleeding is severe; risk of platelet alloimmunization)
- Recombinant factor VIIa, AryoSeven or NovoSeven FDA approved this drug for the treatment of the disease on July 2014.
- Hematopoietic stem cell transplantation (HSCT) for severe recurrent hemorrhages
Heparin-induced thrombocytopenia (HIT) is the development of thrombocytopenia (a low platelet count), due to the administration of various forms of heparin, an anticoagulant. HIT predisposes to thrombosis (the abnormal formation of blood clots inside a blood vessel) because platelets release microparticles that activate thrombin, thereby leading to thrombosis. When thrombosis is identified the condition is called heparin-induced thrombocytopenia and thrombosis (HITT). HIT is caused by the formation of abnormal antibodies that activate platelets. If someone receiving heparin develops new or worsening thrombosis, or if the platelet count falls, HIT can be confirmed with specific blood tests.
The treatment of HIT requires stopping heparin treatment, and both protection from thrombosis and choice of an agent that will not reduce the platelet count any further. Several alternatives are available for this purpose and mainly used are danaparoid, fondaparinux, argatroban and bivalirudin.
While heparin was discovered in the 1930s, HIT was not reported until the 1960s.
The incidence of acute TTP in adults is around 1.7–4.5 per million and year. These cases are nearly all due to the autoimmune form of TTP, where autoantibodies inhibit ADAMTS13 activity. The prevalence of USS has not yet been determined but is assumed to constitute less than 5% of all acute TTP cases. The syndrome's inheritance is autosomal recessive, and is more often caused by compound heterozygous than homozygous mutations. The age of onset is variable and can be from neonatal age up to the 5th–6th decade. The risk of relapses differs between affected individuals. Minimization of the burden of disease can be reached by early diagnosis and initiation of prophylaxis if required.
Onyalai is limited to black populations in central southern Africa. The affected age range is from less than a year to 70 years and seems not to be gender-specific in the same manner as ITP. Cases generally peak between 11 and 20 years old.
Analysis of patient admissions in Namibia between 1981 and 1988 showed an incidence rate of onyalai to be 1.19% with the annual incidence varying between 0.96% and 1.66% of all admissions. The female to male ratio was 3:2. The mean age at presentation was 24.8 years (range 6 months to 80 years) and the mean hospital stay (and duration of clinical bleeding) was 7.68 days (ranging between 1–38 days). The treatment policy of commencing intravenous fluid on admission and a blood transfusion whenever the haemoglobin dropped below 10 g/dl in patients with active bleeding was associated with a mortality rate of 2.78% compared to 9.8% in cases recorded up to 1981.
The prevalence of vWD is about one in 100 individuals. However, the majority of these people do not have symptoms. The prevalence of clinically significant cases is one per 10,000. Because most forms are rather mild, they are detected more often in women, whose bleeding tendency shows during menstruation. It may be more severe or apparent in people with blood type O.
Haemophilia is rare, with only about 1 instance in every 10,000 births (or 1 in 5,000 male births) for haemophilia A and 1 in 50,000 births for haemophilia B. About 18,000 people in the United States have haemophilia. Each year in the US, about 400 babies are born with the disorder. Haemophilia usually occurs in males and less often in females. It is estimated that about 2500 Canadians have haemophilia A, and about 500 Canadians have haemophilia B.