Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
The epidemiology of rapidly progressive glomerulonephritis according to Hedger, et al., is an incidence rate of 3.9 individuals per million (3.3–4.7) with a 95% confidence intervals.
Male gender, proteinuria (especially > 2 g/day), hypertension, smoking, hyperlipidemia, older age, familial disease and elevated creatinine concentrations are markers of a poor outcome. Frank hematuria has shown discordant results with most studies showing a better prognosis, perhaps related to the early diagnosis, except for one group which reported a poorer prognosis. Proteinuria and hypertension are the most powerful prognostic factors in this group.
There are certain other features on kidney biopsy such as interstitial scarring which are associated with a poor prognosis. ACE gene polymorphism has been recently shown to have an impact with the DD genotype associated more commonly with progression to kidney failure.
About a third of untreated patients have spontaneous remission, another third progress to require dialysis and the last third continue to have proteinuria, without progression of renal failure.
The remainder is secondary due to:
- autoimmune conditions (e.g., systemic lupus erythematosus)
- infections (e.g., syphilis, malaria, hepatitis B, hepatitis C)
- drugs (e.g., captopril, NSAIDs, penicillamine, probenecid).
- inorganic salts (e.g. gold, mercury).
- tumors, frequently solid tumors of the lung and colon; hematological malignancies such as chronic lymphocytic leukemia are less common.
Men are affected three times as often as women. There is also marked geographic variation in the prevalence of IgA nephropathy throughout the world. It is the most common glomerular disease in the Far East and Southeast Asia, accounting for almost half of all the patients with glomerular disease. However, it accounts for only about 25% of the proportion in European and about 10% among North Americans, with African–Americans having a very low prevalence of about 2%. However, a confounding factor in this analysis is the existing policy of screening and use of kidney biopsy as an investigative tool. School children in Japan undergo routine urinalysis (as do army recruits in Singapore) and any suspicious abnormality is pursued with a kidney biopsy, which might partly explain the high observed incidence of IgA nephropathy in those countries.
Therapy for rapidly progressive glomerulonephritis is done via corticosteroids and cyclophosphamide. The predictor of kidney survival is serum creatinine value. The substitution of azathioprine for cyclophosphamide after a 90-day initial period is another option.Plasmapheresis can be used for patients who present with severe renal failure.
Nephrotic syndrome can affect any age, although it is mainly found in adults with a ratio of adults to children of 26 to 1.
The syndrome presents in different ways in the two groups: the most frequent glomerulopathy in children is minimal change disease (66% of cases), followed by focal segmental glomerulosclerosis (8%) and mesangiocapillary glomerulonephritis (6%). In adults the most common disease is mesangiocapillary glomerulonephritis (30-40%), followed by focal and segmental glomeruloesclerosis (15-25%) and minimal change disease (20%). The latter usually presents as secondary and not primary as occurs in children. Its main cause is diabetic nephropathy. It usually presents in a patient’s 40s or 50s.
Of the glomerulonephritis cases approximately 60% to 80% are primary, while the remainder are secondary.
There are also differences in epidemiology between the sexes, the disease is more common in men than in women by a ratio of 2 to 1.
The epidemiological data also reveals information regarding the most common way that symptoms develop in patients with nephrotic syndrome: spontaneous remission occurs in up to 20% or 30% of cases during the first year of the illness. However, this improvement is not definitive as some 50% to 60% of patients die and / or develop chronic renal failure 6 to 14 years after this remission. On the other hand, between 10% and 20% of patients have continuous episodes of remissions and relapses without dying or jeopardizing their kidney. The main causes of death are cardiovascular, as a result of the chronicity of the syndrome, and thromboembolic accidents.
The prognosis for nephrotic syndrome under treatment is generally good although this depends on the underlying cause, the age of the patient and their response to treatment. It is usually good in children, because minimal change disease responds very well to steroids and does not cause chronic renal failure. Any relapses that occur become less frequent over time; the opposite occurs with mesangiocapillary glomerulonephritis, in which the kidney fails within three years of the disease developing, making dialysis necessary and subsequent kidney transplant. In addition children under the age of 5 generally have a poorer prognosis than prepubescents, as do adults older than 30 years of age as they have a greater risk of kidney failure.
Other causes such as focal segmental glomerulosclerosis frequently lead to end stage renal disease. Factors associated with a poorer prognosis in these cases include level of proteinuria, blood pressure control and kidney function (GFR).
Without treatment nephrotic syndrome has a very bad prognosis especially "rapidly progressing glomerulonephritis", which leads to acute kidney failure after a few months.
The cause of lupus nephritis, a genetic predisposition, plays role in lupus nephritis. Multiple genes, many of which are not yet identified, mediate this genetic predisposition.
The immune system protects the human body from infection, with immune system problems it cannot distinguish between harmful and healthy substances. Lupus nephritis affects approximately 3 out of 10,000 people.
Acute glomerulonephritis resulted in 19,000 deaths in 2013 down from 24,000 deaths in 1990.
Glomerulonephritis (GN), also known as glomerular nephritis, is a term used to refer to several kidney diseases (usually affecting both kidneys). Many of the diseases are characterised by inflammation either of the glomeruli or of the small blood vessels in the kidneys, hence the name, but not all diseases necessarily have an inflammatory component.
As it is not strictly a single disease, its presentation depends on the specific disease entity: it may present with isolated hematuria and/or proteinuria (blood or protein in the urine); or as a nephrotic syndrome, a nephritic syndrome, acute kidney injury, or chronic kidney disease.
They are categorized into several different pathological patterns, which are broadly grouped into non-proliferative or proliferative types. Diagnosing the pattern of GN is important because the outcome and treatment differs in different types. Primary causes are intrinsic to the kidney. Secondary causes are associated with certain infections (bacterial, viral or parasitic pathogens), drugs, systemic disorders (SLE, vasculitis), or diabetes.
Treatment of acute proliferative glomerulonephritis consists of blood pressure (BP) control:also a renal biopsy may be needed to be performed at some point. A low-sodium diet may be needed when hypertension is present. In individuals with oliguric acute kidney injury, the amount of potassium should be controlled.
Glomerulonephritis refers to an inflammation of the glomerulus, which is the unit involved in filtration in the kidney. This inflammation typically results in one or both of the nephrotic or nephritic syndromes.
Membranoproliferative glomerulonephritis involves deposits at the intraglomerular mesangium.
It is also the main hepatitis C associated nephropathy.
It also is related to a number of autoimmune diseases, prominently systemic lupus erythematosus (SLE). Also found with Sjögren syndrome, rheumatoid arthritis, inherited complement deficiencies (esp C2 deficiency), scleroderma, Celiac disease.
The histomorphologic differential diagnosis includes transplant glomerulopathy and thrombotic microangiopathies.
Drug regimens prescribed for lupus nephritis include mycophenolate mofetil (MMF), intravenous cyclophosphamide with corticosteroids, and the immune suppressant azathioprine with corticosteroids. MMF and cyclophosphamide with corticosteroids are equally effective in achieving remission of the disease. MMF is safer than cyclophosphamide with corticosteroids, with less chance of causing ovarian failure, immune problems or hair loss. It also works better than azathioprine with corticosteroids for maintenance therapy. Individuals with lupus nephritis have a high risk for B-cell lymphoma (which begins in the immune system cells).
Transplant glomerulopathy, abbreviated TG, is a disease of the glomeruli in transplanted kidneys. It is a type of renal injury often associated with chronic antibody-mediated rejection. However, transplant glomerulopathy is not specific for chronic antibody-mediated rejection; it may be the result of a number of disease processes affecting the glomerular endothelium.
Membranoproliferative glomerulonephritis ("MPGN"), also known as mesangiocapillary glomerulonephritis, is a type of glomerulonephritis caused by deposits in the kidney glomerular mesangium and basement membrane (GBM) thickening, activating complement and damaging the glomeruli.
MPGN accounts for approximately 4% of primary renal causes of nephrotic syndrome in children and 7% in adults.
It should not be confused with membranous glomerulonephritis, a condition in which the basement membrane is thickened, but the mesangium is not.
It is characterized by glomerular basement membrane thickening (referred to as "tram-tracking of the basement membrane"), increased mesangial matrix and segmental and global glomerulosclerosis.
The differential diagnosis of tram-tracking includes membranoproliferative glomerulonephritis (especially hepatitis C), and thrombotic microangiopathies.
There is no proven therapy for the CFHR5 nephropathy, although research is currently underway to develop ways of preventing kidney failure developing in those affected.
Proteinuria may be a feature of the following conditions:
- Nephrotic syndromes (i.e. intrinsic renal failure)
- Pre-eclampsia
- Eclampsia
- Toxic lesions of kidneys
- Amyloidosis
- Collagen vascular diseases (e.g. systemic lupus erythematosus)
- Dehydration
- Glomerular diseases, such as membranous glomerulonephritis, focal segmental glomerulonephritis, minimal change disease (lipoid nephrosis)
- Strenuous exercise
- Stress
- Benign orthostatic (postural) proteinuria
- Focal segmental glomerulosclerosis (FSGS)
- IgA nephropathy (i.e. Berger's disease)
- IgM nephropathy
- Membranoproliferative glomerulonephritis
- Membranous nephropathy
- Minimal change disease
- Sarcoidosis
- Alport's syndrome
- Diabetes mellitus (diabetic nephropathy)
- Drugs (e.g. NSAIDs, nicotine, penicillamine, lithium carbonate, gold and other heavy metals, ACE inhibitors, antibiotics, or opiates (especially heroin)
- Fabry's disease
- Infections (e.g. HIV, syphilis, hepatitis, poststreptococcal infection, urinary schistosomiasis)
- Aminoaciduria
- Fanconi syndrome in association with Wilson disease
- Hypertensive nephrosclerosis
- Interstitial nephritis
- Sickle cell disease
- Hemoglobinuria
- Multiple myeloma
- Myoglobinuria
- Organ rejection:
- Ebola virus disease
- Nail patella syndrome
- Familial Mediterranean fever
- HELLP Syndrome
- Systemic lupus erythematosus
- Granulomatosis with polyangiitis
- Rheumatoid arthritis
- Glycogen storage disease type 1
- Goodpasture's syndrome
- Henoch–Schönlein purpura
- A urinary tract infection which has spread to the kidney(s)
- Sjögren's syndrome
- Post-infectious glomerulonephritis
Glomerulonephrosis is a non-inflammatory disease of the kidney (nephrosis) presenting primarily in the glomerulus (a glomerulopathy).
It can be contrasted to glomerulonephritis, which implies inflammation.
It can be caused by diethylnitrosamine.
Diffuse proliferative nephritis (DPN) or glomerulonephritis (DPGN) is a type of glomerulonephritis that is the most serious form of renal lesions in SLE and is also the most common, occurring in 35% to 60% of patients. Most of the glomeruli show endothelial and mesangial proliferation affecting the entire glomerulus, leading to diffuse hypercellularity of the glomeruli, producing in some cases epithelial crescents that fill Bowman's space. When extensive, immune complexes create an overall thickening of the capillary wall, resembling rigid "wire loops" on routine light microscopy. Electron microscopy reveals electron-dense subendothelial immune complexes (between endothelium and basement membrane). Immune complexes can be visualized by staining with fluorescent antibodies directed against immunoglobulins or complement, resulting in a granular fluorescent staining pattern. In due course, glomerular injury gives rise to scarring (glomerulosclerosis). Most of these patients have hematuria with moderate to severe proteinuria, hypertension, and renal insufficiency.
Mesangial proliferative glomerulonephritis is a form of glomerulonephritis associated primarily with the mesangium. There is some evidence that interleukin-10 may inhibit it in an animal model. It is classified as type II lupus nephritis by the World Health Organization (WHO).
Despite expensive treatments, lupus nephritis remains a major cause of morbidity and mortality in people with relapsing or refractory lupus nephritis.
There are three main mechanisms to cause proteinuria:
- Due to disease in the glomerulus
- Because of increased quantity of proteins in serum (overflow proteinuria)
- Due to low reabsorption at proximal tubule (Fanconi syndrome)
Proteinuria can also be caused by certain biological agents, such as bevacizumab (Avastin) used in cancer treatment. Excessive fluid intake (drinking in excess of 4 litres of water per day) is another cause.
Also leptin administration to normotensive Sprague Dawley rats during pregnancy significantly increases urinary protein excretion.
Proteinuria may be a sign of renal (kidney) damage. Since serum proteins are readily reabsorbed from urine, the presence of excess protein indicates either an insufficiency of absorption or impaired filtration. People with diabetes may have damaged nephrons and develop proteinuria. The most common cause of proteinuria is diabetes, and in any person with proteinuria and diabetes, the cause of the underlying proteinuria should be separated into two categories: diabetic proteinuria versus the field.
With severe proteinuria, general hypoproteinemia can develop which results in
diminished oncotic pressure. Symptoms of diminished oncotic pressure may include ascites, edema and hydrothorax.