Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In Haiti, few cases of human rabies are reported to health authorities. In 2016, a report of a woman who had been exposed to rabies three months prior and was showing symptoms went to the hospital where no treatment was administered to her. Even after being reported to both the CDC and the national Department of Epidemiology and Laboratory Research (DELR), as required by Haiti's surveillance program, the woman ended up passing away. This goes to show the lack of communication and effectiveness in caring for human subjects in Haiti, and the continued focus is on eliminating dog-mediated rabies altogether.
Human diploid cell culture rabies vaccine (HDCV) and purified chick embryo cell culture rabies vaccine (PCEC) are used to treat post-exposure immunization against a human rabies infection. Recommendations for treatment are given by governmental health care organizations and in health literature. Health care providers are encouraged to administer a regimen of four 1-mL doses of HDCV or PCEC vaccines. According to the CDC, these injections should be administered intramuscularly to persons who have not yet been vaccinated for rabies.
For those who are unvaccinated, the first of four doses is administered immediately after exposure to the rabies virus. Additional doses are given three, seven, and fourteen days after the first vaccination. Exposure usually means a bite from a rabid animal.
At an individual patient level, post-exposure prophylaxis (PEP) consists of local treatment of the wound, vaccination, and administration of immunoglobulin, if necessary [3]. At the program level, several components are critical, including: adequate and prompt recognition of the need for PEP by the public, if exposed, and by health officials, prompt and sufficient availability of high-quality PEP, and adequate follow-up of PEP use. Health officials' awareness of the need for PEP after a dog bite can only be achieved if the exposure is attended to immediately and communicated effectively.
Globally, 59,000 people die from rabies each year. This is the equivalent of one person dying every nine minutes, with half of the people who die from rabies being under the age of 15. The Pan American Health Organization (PAHO) and the Pan American Center of foot-and-mouth disease (PANAFTOSA) led a mission to eliminate dog-mediated rabies in the American region by 2015. These organizations are cognizant of the regional control of rabies. The PAHO and PANAFTOSA visited Haiti in early December, 2013, and the objectives of the mission were to assess the status of Haiti’s rabies program as delivered by the Haitian Ministry of Agriculture, Natural Resources and Rural Development (MARNDR) and the Ministry of Health (MSPP). The mission was to seek opportunities for collaboration between Haiti, Brazil, and the Centers for Disease Control and Prevention (CDC) in Haiti.
Even in 2017, rabies in Haiti is still identified as a national problem, even with PEP proposed.
In Asia and in parts of the Americas and Africa, dogs remain the principal host. Mandatory vaccination of animals is less effective in rural areas. Especially in developing countries, pets may not be privately kept and their destruction may be unacceptable. Oral vaccines can be safely distributed in baits, a practice that has successfully reduced rabies in rural areas of Canada, France, and the United States. In Montreal, Quebec, Canada, baits are successfully used on raccoons in the Mount-Royal Park area. Vaccination campaigns may be expensive, and cost-benefit analysis suggests baits may be a cost-effective method of control. In Ontario, a dramatic drop in rabies was recorded when an aerial bait-vaccination campaign was launched.
The number of recorded human deaths from rabies in the United States has dropped from 100 or more annually in the early 20th century to one or two per year due to widespread vaccination of domestic dogs and cats and the development of human vaccines and immunoglobulin treatments. Most deaths now result from bat bites, which may go unnoticed by the victim and hence untreated.
Almost all human cases of rabies were fatal until a vaccine was developed in 1885 by Louis Pasteur and Émile Roux. Their original vaccine was harvested from infected rabbits, from which the virus in the nerve tissue was weakened by allowing it to dry for five to ten days. Similar nerve tissue-derived vaccines are still used in some countries, as they are much cheaper than modern cell culture vaccines.
The human diploid cell rabies vaccine was started in 1967. Less expensive purified chicken embryo cell vaccine and purified vero cell rabies vaccine are now available. A recombinant vaccine called V-RG has been used in Belgium, France, Germany, and the United States to prevent outbreaks of rabies in undomesticated animals. Immunization before exposure has been used in both human and nonhuman populations, where, as in many jurisdictions, domesticated animals are required to be vaccinated.
The Missouri Department of Health and Senior Services Communicable Disease Surveillance 2007 Annual Report states the following can help reduce the risk of contracting rabies:
- Vaccinating dogs, cats, and ferrets against rabies
- Keeping pets under supervision
- Not handling wild animals or strays
- Contacting an animal control officer upon observing a wild animal or a stray, especially if the animal is acting strangely
- If bitten by an animal, washing the wound with soap and water for 10 to 15 minutes and contacting a healthcare provider to determine if post-exposure prophylaxis is required
September 28 is World Rabies Day, which promotes the information, prevention, and elimination of the disease.
In 2012, the World Health Organization estimated that vaccination prevents 2.5 million deaths each year. If there is 100% immunization, and 100% efficacy of the vaccines, one out of seven deaths among young children could be prevented, mostly in developing countries, making this an important global health issue. Four diseases were responsible for 98% of vaccine-preventable deaths: measles, "Haemophilus influenzae" serotype b, pertussis, and neonatal tetanus.
The Immunization Surveillance, Assessment and Monitoring program of the WHO monitors and assesses the safety and effectiveness of programs and vaccines at reducing illness and deaths from diseases that could be prevented by vaccines.
Vaccine-preventable deaths are usually caused by a failure to obtain the vaccine in a timely manner. This may be due to financial constraints or to lack of access to the vaccine. A vaccine that is generally recommended may be medically inappropriate for a small number of people due to severe allergies or a damaged immune system. In addition, a vaccine against a given disease may not be recommended for general use in a given country, or may be recommended only to certain populations, such as young children or older adults. Every country makes its own vaccination recommendations, based on the diseases that are common in its area and its healthcare priorities. If a vaccine-preventable disease is uncommon in a country, then residents of that country are unlikely to receive a vaccine against it. For example, residents of Canada and the United States do not routinely receive vaccines against yellow fever, which leaves them vulnerable to infection if travelling to areas where risk of yellow fever is highest (endemic or transitional regions).
Most of the time, Zika fever resolves on its own in 2 to 7 days, but rarely, some people develop Guillain–Barré syndrome. The fetus of a pregnant woman who has Zika fever may die or be born with congenital central nervous system malformations, like microcephaly.
The pathophysiology of Zika-induced microcephaly is not known and was a subject of active research as of the end of 2016.
Rabies can be contracted in horses if they interact with rabid animals in their pasture, usually being bitten on the muzzle or lower limbs. Signs include aggression, incoordination, head-pressing, circling, lameness, muscle tremors, convulsions, colic and fever. Horses that experience the paralytic form of rabies have difficulty swallowing, and drooping of the lower jaw due to paralysis of the throat and jaw muscles. Incubation of the virus may range from 2–9 weeks. Death often occurs within 4–5 days of infection of the virus. There are no effective treatments for rabies in horses. Veterinarians recommend an initial vaccination as a foal at three months of age, repeated at one year and given an annual booster.
Contact with farm animals can lead to disease in farmers or others that come into contact with infected animals. Glanders primarily affects those who work closely with horses and donkeys. Close contact with cattle can lead to cutaneous anthrax infection, whereas inhalation anthrax infection is more common for workers in slaughterhouses, tanneries and wool mills. Close contact with sheep who have recently given birth can lead to clamydiosis, or enzootic abortion, in pregnant women, as well as an increased risk of Q fever, toxoplasmosis, and listeriosis in pregnant or the otherwise immunocompromised. Echinococcosis is caused by a tapeworm which can be spread from infected sheep by food or water contaminated with feces or wool. Bird flu is common in chickens. While rare in humans, the main public health worry is that a strain of bird flu will recombine with a human flu virus and cause a pandemic like the 1918 Spanish flu. In 2017, free range chickens in the UK were temporarily ordered to remain inside due to the threat of bird flu. Cattle are an important reservoir of cryptosporidiosis and mainly affects the immunocompromised.
Rabies is a viral zoonotic neuroinvasive disease which causes inflammation in the brain and is usually fatal. Rabies, caused by the rabies virus, primarily infects mammals. In the laboratory it has been found that birds can be infected, as well as cell cultures from birds, reptiles and insects. Animals with rabies suffer deterioration of the brain and tend to behave bizarrely and often aggressively, increasing the chances that they will bite another animal or a person and transmit the disease. Most cases of humans contracting the disease from infected animals are in developing nations. In 2010, an estimated 26,000 people died from rabies, down from 54,000 in 1990.
The virus’s transmission cycle in the wild is similar to the continuous sylvatic cycle of yellow fever and is believed to involve wild primates (monkeys) as the reservoir and the tree-canopy-dwelling "Haemagogus" species mosquito as the vector. Human infections are strongly associated with exposure to humid tropical forest environments. Chikungunya virus is closely related, producing a nearly indistinguishable, highly debilitating arthralgic disease. On February 19, 2011, a Portuguese-language news source reported on a recent survey which revealed Mayaro virus activity in Manaus, Amazonas State, Brazil. The survey studied blood samples from 600 residents of Manaus who had experienced a high fever; Mayaro virus was identified in 33 cases. Four of the cases experienced mild hemorrhagic (bleeding) symptoms, which had not previously been described in Mayaro virus disease. The report stated that this outbreak is the first detected in a metropolitan setting, and expressed concern that the disease might be adapting to urban species of mosquito vectors, which would make it a risk for spreading within the country. A study published in 1991 demonstrated that a colonized strain of Brazilian "Aedes albopictus" was capable of acquiring MAYV from infected hamsters and subsequently transmitting it and a study published in October 2011 demonstrated that "Aedes aegypti" can transmit MAYV, supporting the possibility of wider transmission of Mayaro virus disease in urban settings.
In addition to vaccine-specific factors, vets and owners should also consider pet-specific factors that have been shown to increase the risk of adverse reactions in both dogs and cats. Examples of such factors include:
- age,
- number of vaccinations per office visit,
- size,
- general health of the animal,
- breed,
- neutered status, and
- past vaccination history.
The most significant zoonotic pathogens causing foodborne diseases are , "Campylobacter", "Caliciviridae", and "Salmonella".
In 2006, a conference held in Berlin was focusing on the issue of zoonotic pathogen effects on food safety, urging governments to intervene, and the public to be vigilant towards the risks of catching food-borne diseases from farm-to-dining table.
Many food outbreaks can be linked to zoonotic pathogens. Many different types of food can be contaminated that have an animal origin. Some common foods linked to zoonotic contaminations include eggs, seafood, meat, dairy, and even some vegetables. Food outbreaks should be handled in preparedness plans to prevent widespread outbreaks and to efficiently and effectively contain outbreaks.
The WHO lists 25 diseases for which vaccines are available:
1. Measles
2. Rubella
3. Cholera
4. Meningococcal disease
5. Influenza
6. Diphtheria
7. Mumps
8. Tetanus
9. Hepatitis A
10. Pertussis
11. Tuberculosis
12. Hepatitis B
13. Pneumoccocal disease
14. Typhoid fever
15. Hepatitis E
16. Poliomyelitis
17. Tick-borne encephalitis
18. Haemophilus influenzae type b
19. Rabies
20. Varicella and herpes zoster (shingles)
21. Human papilloma-virus
22. Rotavirus gastroenteritis
23. Yellow fever
24. Japanese encephalitis
25. Malaria
26. Dengue fever
Fortunately, severe systemic reaction to vaccine allergy is very rare in dogs. When it does occur, however, anaphylaxis is a life-threatening emergency. More often, dogs will develop urticaria, or hives within minutes of receiving a vaccine. When this occurs, a veterinarian will treat the reaction with antihistamines and corticosteroid drugs and this is usually effective. Future vaccine protocols must be modified according to the vaccine component suspected to have triggered the reaction.
Although no specific treatment for acute infection with SuHV1 is available, vaccination can alleviate clinical signs in pigs of certain ages. Typically, mass vaccination of all pigs on the farm with a modified live virus vaccine is recommended. Intranasal vaccination of sows and neonatal piglets one to seven days old, followed by intramuscular (IM) vaccination of all other swine on the premises, helps reduce viral shedding and improve survival. The modified live virus replicates at the site of injection and in regional lymph nodes. Vaccine virus is shed in such low levels, mucous transmission to other animals is minimal. In gene-deleted vaccines, the thymidine kinase gene has also been deleted; thus, the virus cannot infect and replicate in neurons. Breeding herds are recommended to be vaccinated quarterly, and finisher pigs should be vaccinated after levels of maternal antibody decrease. Regular vaccination results in excellent control of the disease. Concurrent antibiotic therapy via feed and IM injection is recommended for controlling secondary bacterial pathogens.
Mayaro virus disease is a mosquitoborne zoonotic pathogen endemic to certain humid forests of tropical South America. Infection with Mayaro virus causes an acute, self-limited dengue-like illness of 3–5 days' duration. The causative virus, abbreviated MAYV, is in the family Togaviridae, and genus Alphavirus. It is closely related to other alphaviruses that produce a dengue-like illness accompanied by long-lasting arthralgia. It is only known to circulate in tropical South America.
Aujeszky's disease, usually called pseudorabies in the United States, is a viral disease in swine that has been endemic in most parts of the world. It is caused by "Suid herpesvirus 1" (SuHV1). Aujeszky's disease is considered to be the most economically important viral disease of swine in areas where hog cholera has been eradicated. Other mammals, such as humans, cattle, sheep, goats, cats, dogs, and raccoons, are also susceptible. The disease is usually fatal in these animal species bar humans.
The term "pseudorabies" is found inappropriate by many people, as SuHV1 is a herpesvirus and not related to the rabies virus.
Research on SuHV1 in pigs has pioneered animal disease control with genetically modified vaccines. SuHV1 is now used in model studies of basic processes during lytic herpesvirus infection, and for unravelling molecular mechanisms of herpesvirus neurotropism.
Yellow fever is common in tropical and subtropical areas of South America and Africa. Worldwide, about 600 million people live in endemic areas. The WHO estimates 200,000 cases of disease and 30,000 deaths a year occur; the number of officially reported cases is far lower.
Many viral infections of the central nervous system occur in seasonal peaks or as epidemics, whereas others, such as herpes simplex encephalitis, are sporadic. In endemic areas it is mostly a disease of children, but as the disease spreads to new regions, or nonimmune travelers visit endemic regions, nonimmune adults are also affected.
The U.S. Centers for Disease Control and Prevention (CDC) publishes a journal "Emerging Infectious Diseases" that identifies the following factors contributing to disease emergence:
- Microbial adaption; e.g. genetic drift and genetic shift in Influenza A
- Changing human susceptibility; e.g. mass immunocompromisation with HIV/AIDS
- Climate and weather; e.g. diseases with zoonotic vectors such as West Nile Disease (transmitted by mosquitoes) are moving further from the tropics as the climate warms
- Change in human demographics and trade; e.g. rapid travel enabled SARS to rapidly propagate around the globe
- Economic development; e.g. use of antibiotics to increase meat yield of farmed cows leads to antibiotic resistance
- Breakdown of public health; e.g. the current situation in Zimbabwe
- Poverty and social inequality; e.g. tuberculosis is primarily a problem in low-income areas
- War and famine
- Bioterrorism; e.g. 2001 Anthrax attacks
- Dam and irrigation system construction; e.g. malaria and other mosquito borne diseases
Meningitis is a very common in children. Newborns can develop herpes virus infections through contact with infected secretions in the birth canal. Other viral infections are acquired by breathing air contaminated with virus-containing droplets exhaled by an infected person. Arbovirus infections are acquired from bites by infected insects (called epidemic encephalitis). Viral central nervous system infections in newborns and infants usually begin with fever. The inability of infants to communicate directly makes it difficult to understand their symptoms. Newborns may have no other symptoms and may initially not otherwise appear ill. Infants older than a month or so typically become irritable and fussy and refuse to eat. Vomiting is common. Sometimes the soft spot on top of a newborn's head (fontanelle) bulges, indicating an increase in pressure on the brain. Because irritation of the meninges is worsened by movement, an infant with meningitis may cry more, rather than calm down, when picked up and rocked. Some infants develop a strange, high-pitched cry. Infants with encephalitis often have seizures or other abnormal movements. Infants with severe encephalitis may become lethargic and comatose and then die. To make the diagnosis of meningitis or the diagnosis of encephalitis, doctors do a spinal tap (lumbar puncture) to obtain cerebrospinal fluid (CSF) for laboratory analysis in children.
Cat bites are bites inflicted upon humans, other cats, and other animals by the domestic cat. () Though uncommon, sometimes cat bites can lead to complications and very rarely, death.
Human-to-human transmission of diphtheria typically occurs through the air when an infected individual coughs or sneezes. Breathing in particles released from the infected individual leads to infection Contact with any lesions on the skin can also lead to transmission of diphtheria, but this is uncommon. Indirect infections can occur, as well. If an infected individual touches a surface or object, the bacteria can be left behind and remain viable. Also, some evidence indicates diphtheria has the potential to be zoonotic, but this has yet to be confirmed. "Corynebacterium ulcerans" has been found in some animals, which would suggest zoonotic potential
An estimated 90% of the infections occur on the African continent. In 2008, the largest number of recorded cases was in Togo. In 2016, a large outbreak originated in Angola and spread to neighboring countries before being contained by a massive vaccination campaign. In March and April, 11 cases were reported in China, the first appearance of the disease in Asia in recorded history.
Phylogenetic analysis has identified seven genotypes of yellow fever viruses, and they are assumed to be differently adapted to humans and to the vector "A. aegypti". Five genotypes (Angola, Central/East Africa, East Africa, West Africa I, and West Africa II) occur only in Africa. West Africa genotype I is found in Nigeria and the surrounding areas. This appears to be especially virulent or infectious, as this type is often associated with major outbreaks. The three genotypes in East and Central Africa occur in areas where outbreaks are rare. Two recent outbreaks in Kenya (1992–1993) and Sudan (2003 and 2005) involved the East African genotype, which had remained unknown until these outbreaks occurred.