Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
DSPD is genetically linked to attention deficit hyperactivity disorder by findings of polymorphism in genes in common between those apparently involved in ADHD and those involved in the circadian rhythm and a high proportion of DSPD among those with ADHD.
Sleep apnea can affect people regardless of sex, race, or age. However, risk factors include:
- being male
- excessive weight
- an age above 40
- large neck size (greater than 16–17 inches)
- enlarged tonsils or tongue
- small jaw bone
- gastroesophageal reflux
- allergies
- sinus problems
- a family history of sleep apnea
- deviated septum
Alcohol, sedatives and tranquilizers may also promote sleep apnea by relaxing throat muscles. Smokers have sleep apnea at three times the rate of people who have never smoked.
Central sleep apnea is more often associated with any of the following risk factors:
- being male
- an age above 65
- having heart disorders such as atrial fibrillation or atrial septal defects such as PFO
- stroke
High blood pressure is very common in people with sleep apnea.
There have been many studies suggesting health risks associated with shift work. For example, a 2007 study led by the IARC (International Agency for Research on Cancer) showed that shiftwork has been associated with cancer. Other studies have reported that night workers have an increased incidence of heart disease, digestive disorders and menstrual irregularities. Because a formal diagnosis of SWSD was not typically made in these studies, it remains unclear whether the reported risks apply to the subset of shiftworkers who qualify for a diagnosis of SWSD or apply to all shiftworkers.
A link between GlaxoSmithKline's H1N1 flu vaccine Pandemrix and childhood narcolepsy was investigated due to increased prevalence of narcolepsy in Irish, Finnish and Swedish children after vaccinations. Finland's National Institute of Health and Welfare recommended that Pandemrix vaccinations be suspended pending further investigation into 15 reported cases of children developing narcolepsy. In Finland in mid-November 2010, 37 cases of children's narcolepsy had been reported by doctors. This can be compared to the normal average of 3 cases of children's narcolepsy per year. "The incidence of narcolepsy with cataplexy in children/adolescents in the Swedish population increased during the pandemic and vaccination period, with a rapid decline in incidence during the post pandemic period." They concluded that these results "provide strengthened evidence that vaccination with Pandemrix during the pandemic period could be associated with an increase in the risk for narcolepsy with cataplexy in predisposed children/adolescents 19 years and younger." In 2013, the link between Pandemrix and narcolepsy was confirmed by a registry study by the Swedish Medical Products Agency, with a three-fold increase in risk for people under the age of 20.
Histamine plays a role in wakefulness in the brain. An allergic reaction over produces histamine causing wakefulness and inhibiting sleep Sleep problems are common in people with allergic rhinitis. A study from the N.I.H. found that sleep is dramatically impaired by allergic symptoms and that the degree of impairment is related to the severity of those symptoms s Treatment of allergies has also been shown to help sleep apnea.
The most comprehensive assessment so far has estimated RBD prevalence to be about 0.5% in individuals aged 15 to 100. It is far more common in males: most studies report that only about a tenth of sufferers are female. This may partially be due to a referral bias, as violent activity carried out by men is more likely to result in harm and injury and is more likely to be reported than injury to male bed partners by women, or it may reflect a true difference in prevalence as a result of genetic or androgenic factors. The mean age of onset is estimated to be about 60 years.
Various conditions are very similar to RBD in that sufferers exhibit excessive sleep movement and potentially violent behavior. Such disorders include sleepwalking and sleep terrors, which are associated with other stages of sleep, nocturnal seizures and obstructive sleep apnea which can induce arousals from REM sleep associated with complex behaviors. Because of the similarities between the conditions, polysomnography plays an important role in confirming RBD diagnosis.
It is now apparent that RBD appears in association with a variety of different conditions. Narcolepsy has been reported as a related disorder. Both RBD and narcolepsy involve dissociation of sleep states probably arising from a disruption of sleep control mechanisms. RBD has also been reported following cerebrovascular accident and neurinoma (tumor), indicating that damage to the brain stem area may precipitate RBD. RBD is usually chronic. However, it may be acute and sudden in onset if associated with drug treatment or withdrawal (particularly with alcohol withdrawal). 60% of RBD is idiopathic. This includes RBD that is found in association with conditions such as Parkinson's disease and dementia with Lewy bodies, where it is often seen to precede the onset of neurodegenerative disease. Monoamine oxidase inhibitors, tricyclic antidepressants, Selective serotonin reuptake inhibitors, and noradrenergic antagonists can induce or aggravate RBD symptoms and should be avoided in patients with RBD.
Persons with obsessive-compulsive disorder are also diagnosed with DSPD at a much higher rate than the general public.
There is some evidence that a predisposition to night terrors and other parasomnias may be congenital. Individuals frequently report that past family members have had either episodes of sleep terrors or sleepwalking. In some studies, a ten-fold increase in the prevalence of night terrors in first-degree biological relatives has been observed—however, the exact link to inheritance is not known. Familial aggregation has been found suggesting that there is an autosomal mode of inheritance. In addition, some laboratory findings suggest that sleep deprivation and having a fever can increase the likelihood of a night terror episode occurring. Other contributing factors include nocturnal asthma, gastroesophageal reflux, and central nervous system medications. Special consideration must be used when the subject suffers from narcolepsy, as there may be a link. There have been no findings that show a cultural difference between manifestations of night terrors, though it is thought that the significance and cause of night terrors differ within cultures. Evidence suggests that nightmares are more common among women than men.
Also, older children and adults provide highly detailed and descriptive images associated with their sleep terrors compared to younger children, who either cannot recall or only vaguely remember. Sleep terrors in children are also more likely to occur in males than females; in adults, the ratio between sexes is equal. A longitudinal study examined twins, both identical and fraternal, and found that a significantly higher concordance rate of night terror was found in identical twins than in fraternal.
Though the symptoms of night terrors in adolescents and adults are similar, their causes, prognoses, and treatments are qualitatively different. There is some evidence that suggests that night terrors can occur if the sufferer does not eat a proper diet, does not get the appropriate amount or quality of sleep (e.g., because of sleep apnea), or is enduring stressful events. Adults who have experienced sexual abuse are more likely to receive a diagnosis of sleep disorders, including night terrors. Overall, though, adult night terrors are much less common and often respond best to treatments that rectify causes of poor quality or quantity of sleep.
The primary genetic factor that has been strongly implicated in the development of narcolepsy involves an area of chromosome 6 known as the human leukocyte antigen (HLA) complex. Specific variations in HLA genes are strongly correlated with the presence of narcolepsy; however, these variations are not required for the condition to occur and sometimes occur in individuals without narcolepsy. These genetic variations in the HLA complex are thought to increase the risk of an auto-immune response to orexin-releasing neurons in the lateral hypothalamus.
The allele HLA-DQB1*06:02 of the human gene HLA-DQB1 was reported in more than 90% of patients, and alleles of other HLA genes such as HLA-DQA1*01:02 have been linked. A 2009 study found a strong association with polymorphisms in the TRAC gene locus (dbSNP IDs rs1154155, rs12587781, and rs1263646). A 2013 review article reported additional but weaker links to the loci of the genes TNFSF4 (rs7553711), Cathepsin H (rs34593439), and P2RY11-DNMT1 (rs2305795).
Another gene locus that has been associated with narcolepsy is EIF3G (rs3826784).
A systematic review found that traumatic childhood experiences (such as family conflict or sexual trauma) significantly increases the risk for a number of sleep disorders in adulthood, including sleep apnea, narcolepsy, and insomnia. It is currently unclear whether or not moderate alcohol consumption increases the risk of obstructive sleep apnea.
In addition, an evidence-based synopses suggests that the sleep disorder, idiopathic REM sleep behavior disorder (iRBD), may have a hereditary component to it. A total of 632 participants, half with iRBD and half without, completed self-report questionnaires. The results of the study suggest that people with iRBD are more likely to report having a first-degree relative with the same sleep disorder than people of the same age and sex that do not have the disorder. More research needs to be conducted to gain further information about the hereditary nature of sleep disorders.
A population susceptible to the development of sleep disorders is people who have experienced a traumatic brain injury (TBI). Because many researchers have focused on this issue, a systematic review was conducted to synthesize their findings. According to their results, TBI individuals are most disproportionately at risk for developing narcolepsy, obstructive sleep apnea, excessive daytime sleepiness, and insomnia. The study's complete findings can be found in the table below:
The Wisconsin Sleep Cohort Study estimated in 1993 that roughly one in every 15 Americans was affected by at least moderate sleep apnea. It also estimated that in middle-age as many as nine percent of women and 24 percent of men were affected, undiagnosed and untreated.
The costs of untreated sleep apnea reach further than just health issues. It is estimated that in the U.S. the average untreated sleep apnea patient's annual health care costs $1,336 more than an individual without sleep apnea. This may cause $3.4 billion/year in additional medical costs. Whether medical cost savings occur with treatment of sleep apnea remains to be determined.
Several circumstances have been identified that are associated with an increased risk of sleep paralysis. These include insomnia, sleep deprivation, an erratic sleep schedule, stress, and physical fatigue. It is also believed that there may be a genetic component in the development of RISP, because there is a high concurrent incidence of sleep paralysis in monozygotic twins. Sleeping in the supine position has been found an especially prominent instigator of sleep paralysis.
Sleeping in the supine position is believed to make the sleeper more vulnerable to episodes of sleep paralysis because in this sleeping position it is possible for the soft palate to collapse and obstruct the airway. This is a possibility regardless of whether the individual has been diagnosed with sleep apnea or not. There may also be a greater rate of microarousals while sleeping in the supine position because there is a greater amount of pressure being exerted on the lungs by gravity.
While many factors can increase risk for ISP or RISP, they can be avoided with minor lifestyle changes. By maintaining a regular sleep schedule and observing good sleep hygiene, one can reduce chances of sleep paralysis. It helps subjects to reduce the intake of stimulants and stress in daily life by taking up a hobby or seeing a trained psychologist who can suggest coping mechanisms for stress. However, some cases of ISP and RISP involve a genetic factor—which means some people may find sleep paralysis unavoidable. Practicing meditation regularly might also be helpful in preventing fragmented sleep, and thus the occurrence of sleep paralysis. Research has shown that long-term meditation practitioners spend more time in slow wave sleep, and as such regular meditation practice could reduce nocturnal arousal and thus possibly sleep paralysis.
SSM is poorly understood. As of 2008, there is little to no information regarding risk factors or prevention, though it is believed to be most prevalent among young to middle aged adults.
Distribution among the general population and by gender is unknown. About 5% of the clinical population may be affected, though that figure is subject to sampling bias.
Idiopathic hypersomnia is a lifelong disorder (with only rare spontaneous remissions) whose symptoms typically begin in adolescence or young adulthood. It is initially progressive, but may stabilize, and its main consequences are professional and social.
Idiopathic hypersomnia profoundly affects work, education, and quality of life. Patients are often too sleepy to work or attend school regularly, and they are predisposed "to develop serious performance decrements in multiple areas of function as well as to potentially life-threatening domestic, work-related and driving accidents." Furthermore, these risks are higher for idiopathic hypersomnia patients than for those with sleep apnea or severe insomnia. In fact, "the most severe cases of daytime somnolence are found in patients affected by narcolepsy or idiopathic hypersomnia." And idiopathic hypersomnia is often as, if not more, disabling than narcolepsy; surprisingly, excessive daytime sleepiness is even more handicapping than the cataplectic attacks of narcolepsy.
Due to the consequences of their profound EDS, both idiopathic hypersomnia and narcolepsy can often result in unemployment. Several studies have shown a high rate of unemployment in narcoleptics (from 30-59%), which was felt to be related to the severe symptoms of their illness.
Waking up in the middle of the night, or nocturnal awakening, is the most frequently reported insomnia symptom, with approximately 35% of Americans over 18 reporting waking up three or more times per week. Of those who experience nocturnal awakenings, 43% report difficulty in resuming sleep after waking, while over 90% report the condition persisting for more than six months. Greater than 50% contend with MOTN conditions for more than five years.
A 2008 "Sleep in America" poll conducted by the National Sleep Foundation found that 42% of respondents awakened during the night at least a few nights a week, and 29% said they woke up too early and couldn’t get back to sleep. Other clinical studies have reported between 25% and 35% of people experience nocturnal awakenings at least three nights a week.
Sexsomnia affects individuals of all age groups and backgrounds but present as an increased risk for individuals who possess the following:
- coexisting sleep disorders
- sleep disruption secondary to obstructive sleep apnea
- sleep related epilepsy
- certain medications
Behaviors of pelvic thrusting, sexual arousal, and orgasms are often attributed to sleep related epilepsy disorder. In some cases, physical contact with a partner in bed acted as a trigger to initiate sexsomia behaviors.
Medications, such as the commonly prescribed treatment for insomnia, Ambien, have been shown to induce symptoms commonly associated with sexsomnia.
Like sleep-related eating disorders, sexsomnia presents more commonly in adults than children. However, these individuals usually have a history of parasomnias that began during childhood.
Abnormally low levels of acylcarnitine have been observed in patients with narcolepsy. These same low levels have been associated with primary hypersomnia in general in mouse studies. "Mice with systemic carnitine deficiency exhibit a higher frequency of fragmented wakefulness and rapid eye movement (REM) sleep, and reduced locomotor activity." Administration of acetyl-L-carnitine was shown to improve these symptoms in mice. A subsequent human trial found that narcolepsy patients given L-carnitine spent less total time in daytime sleep than patients who were given placebo.
Insomnia and wake-time sleepiness are related to misalignment between the timing of the non-standard wake–sleep schedule and the endogenous circadian propensity for sleep and wake. In addition to circadian misalignment, attempted sleep at unusual times can be interrupted by noise, social obligations, and other factors. Finally, there is an inevitable degree of sleep deprivation associated with sudden transitions in sleep schedule.
What is considered objective insomnia, unlike SSM, can easily be confirmed empirically through clinical testing, such as by polysomnogram. Those who experience SSM may believe that they have not slept for extended periods of time, when they in fact do sleep but without perceiving it. For example, while patients who claim little or no sleep may usually acknowledge impaired job performance and daytime drowsiness, sleep state misperceivers often do not.
Cases of objective total insomnia are extremely rare. The few that have been recorded have predominantly been ascribed to a rare incurable genetic disorder called fatal familial insomnia, which patients rarely survive for more than 26 months after the onset of illness—often much less. While rarer cases of objective total insomnia lasting for decades have been reported, such as with the American Al Herpin and the Vietnamese Thai Ngoc, they have not been studied extensively in a clinical setting.
Night terrors typically occur in children between the ages of three and twelve years, with a peak onset in children aged three and a half years old.
An estimated 1–6% of children experience night terrors. Boys and girls of all ethnic backgrounds are affected equally. In children younger than three and a half years old, peak frequency of night terrors is at least one episode per week. Among older children, peak frequency of night terrors is one or two episodes per month. The children will most likely have no recollection of the episode the next day. Pediatric evaluation may be sought to exclude the possibility that the night terrors are caused by seizure disorders or breathing problems. Most children will outgrow sleep terrors.
One of these disorders is extrinsic (from Latin "extrinsecus", from without, on the outside) or circumstantial:
- Shift work sleep disorder, which affects people who work nights or rotating shifts.
Formerly, jet lag, too, was classified as an extrinsic type circadian rhythm disorder.
Symptoms of sexsomnia can be caused by or be associated with:
- stress factors
- sleep deprivation
- Consumption of alcohol or other drugs
- Pre-existing parasomnia behaviors
Sleep deprivation is known to have negative effects on the brain and behavior. Extended periods of sleep deprivation often results in the malfunctioning of neurons, directly effecting an individual's behavior. While muscles are able to regenerate even in the absence of sleep, neurons are incapable of this ability. Specific stages of sleep are responsible for the regeneration of neurons while others are responsible for the generation of new synaptic connections, the formation of new memories, etc.
Zolpidem, the widely known sedative Ambien, is used as common treatment for insomnia and has been seen to result in sexsomnia as an adverse effect.
Sexsomnia can also be triggered by physical contact initiated by a partner, or an individual sharing the same bed.
Although "there has been no cure of chronic hypersomnia", there are several treatments that may improve patients' quality of life, depending on the specific cause or causes of hypersomnia that are diagnosed.
ISWD has various causes, including neurological disorders such as dementia (particularly Alzheimer's Disease), brain damage, or mental retardation. It is thought that sufferers have a weak circadian clock. The risk for the disorder increases with age, but only due to increased prevalence of co-morbid medical disorders.
EDS can be a symptom of a number of factors and disorders. Specialists in sleep medicine are trained to diagnose them. Some are:
- Insufficient quality or quantity of night time sleep.
- Misalignments of the body's circadian pacemaker with the environment (e.g. jet lag, shift work or other circadian rhythm sleep disorders).
- Another underlying sleep disorder, such as narcolepsy, sleep apnea, idiopathic hypersomnia or restless legs syndrome.
- Disorders such as clinical depression or atypical depression.
- Tumors, head trauma, anemia, kidney failure, hypothyroidism or an injury to the central nervous system.
- Drug abuse.
- Genetic predisposition
- Vitamin deficiency, such as Biotin deficiency
- Particular classes of prescription and OTC medication