Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The prognosis of pulmonary arterial hypertension (WHO Group I) has an "untreated" median survival of 2–3 years from time of diagnosis, with the cause of death usually being right ventricular failure (cor pulmonale). A recent outcome study of those patients who had started treatment with bosentan (Tracleer) showed that 89% patients were alive at 2 years. With new therapies, survival rates are increasing. For 2,635 patients enrolled in The Registry to Evaluate Early and Long-term Pulmonary Arterial Hypertension Disease Management (REVEAL Registry) from March 2006 to December 2009, 1-, 3-, 5-, and 7-year survival rates were 85%, 68%, 57%, and 49%, respectively. For patients with idiopathic/familial PAH, survival rates were 91%, 74%, 65%, and 59%. Levels of mortality are very high in pregnant women with severe pulmonary arterial hypertension (WHO Group I). Pregnancy is sometimes described as contraindicated in these women.
The epidemiology of IPAH is about 125–150 deaths per year in the U.S., and worldwide the incidence is similar to the U.S. at 4 cases per million. However, in parts of Europe (France) indications are 6 cases per million of IPAH. Females have a higher incidence rate than males (2–9:1).
Other forms of PH are far more common. In systemic scleroderma, the incidence has been estimated to be 8 to 12% of all patients; in rheumatoid arthritis it is rare. However, in systemic lupus erythematosus it is 4 to 14%, and in sickle cell disease, it ranges from 20 to 40%. Up to 4% of people who suffer a pulmonary embolism go on to develop chronic thromboembolic disease including pulmonary hypertension. A small percentage of patients with COPD develop pulmonary hypertension with no other disease to explain the high pressure. On the other hand, obesity-hypoventilation syndrome is very commonly associated with right heart failure due to pulmonary hypertension.
CTEPH is an orphan disease with an estimated incidence of 5 cases per million, but it is likely that CTEPH is under-diagnosed as symptoms are non-specific. Although a cumulative incidence of CTEPH between 0.1% and 9.1% within the first 2 years after a symptomatic PE has been reported, it is currently unclear whether acute symptomatic PE begets CTEPH. Routine screening for CTEPH after PE is not recommended because a significant number of CTEPH cases develops in the absence of previous acute symptomatic PE. In addition, approximately 25% of patients with CTEPH do not present with a clinical history of acute PE. The median age of patients at diagnosis is 63 years (there is a wide age range, but paediatric cases are rare), and both genders are equally affected.
Historically the prognosis for patients with untreated CTEPH was poor, with a 5-year survival of 40 mmHg at presentation. More contemporary data from the European CTEPH registry have demonstrated a 70% 3-year survival in patients with CTEPH who do not undergo the surgical procedure of pulmonary endarterectomy (PEA). Recent data from an international CTEPH registry demonstrate that mortality in CTEPH is associated with New York Heart Association (NYHA) functional class IV, increased right atrial pressure, and a history of cancer. Furthermore, comorbidities such as coronary disease, left heart failure, and chronic obstructive pulmonary disease (COPD) are risk factors for mortality.
Individual susceptibility to HAPE is difficult to predict. The most reliable risk factor is previous susceptibility to HAPE, and there is likely to be a genetic basis to this condition, perhaps involving the gene for angiotensin converting enzyme (ACE). Recently, scientists have found the similarities between low amounts of 2,3-BPG (also known as 2,3-DPG) with the occurrence of HAPE at high altitudes. Persons with sleep apnea are susceptible due to irregular breathing patterns while sleeping at high altitudes.
The incidence of clinical HAPE in unacclimatized travelers exposed to high altitude (~) appears to be less than 1%. The U.S. Army Pike's Peak Research Laboratory has exposed sea-level-resident volunteers rapidly and directly to high altitude; during 30 years of research involving about 300 volunteers (and over 100 staff members), only three have been evacuated with suspected HAPE.
In terms of the epidemiology of air embolisms one finds that the "intra-operative" period to have the highest incidence. For example, VAE in neurological cases ranges up to 80%, and OBGYN surgeries incidence can climb to 97% for VAE (vascular air embolism). In divers the incidence rate is 7/100,000 per dive.
Following diagnosis, mean survival of patients with PPH is 15 months. The survival of those with cirrhosis is sharply curtailed by PPH but can be significantly extended by both medical therapy and liver transplantation, provided the patient remains eligible.
Eligibility for transplantation is generally related to mean pulmonary artery pressure (PAP). Given the fear that those PPH patients with high PAP will suffer right heart failure following the stress of post-transplant reperfusion or in the immediate perioperative period, patients are typically risk-stratified based on mean PAP. Indeed, the operation-related mortality rate is greater than 50% when pre-operative mean PAP values lie between 35 and 50 mm Hg; if mean PAP exceeds 40-45, transplantation is associated with a perioperative mortality of 70-80% (in those cases without preoperative medical therapy). Patients, then, are considered to have a high risk of perioperative death once their mean PAP exceeds 35 mm_Hg.
Survival is best inferred from published institutional experiences. At one institution, without treatment, 1-year survival was 46% and 5-year survival was 14%. With medical therapy, 1-year survival was 88% and 5-year survival was 55%. Survival at 5 years with medical therapy followed by liver transplantation was 67%. At another institution, of the 67 patients with PPH from 1652 total cirrhotics evaluated for transplant, half (34) were placed on the waiting list. Of these, 16 (48%) were transplanted at a time when 25% of all patients who underwent full evaluation received new livers, meaning the diagnosis of PPH made a patient twice as likely to be transplanted, once on the waiting list. Of those listed for transplant with PPH, 11 (33%) were eventually removed because of PPH, and 5 (15%) died on the waitlist. Of the 16 transplanted patients with PPH, 11 (69%) survived for more than a year after transplant, at a time when overall one-year survival in that center was 86.4%. The three year post-transplant survival for patients with PPH was 62.5% when it was 81.02% overall at this institution.
This has a poor prognosis, as it is a fixed abnormality. Causes include post-term pregnancy, placental insufficiency, and NSAID use by the mother.
Trauma to the lung can also cause an air embolism. This may happen after a patient is placed on a ventilator and air is forced into an injured vein or artery, causing sudden death. Breath-holding while ascending from scuba diving may also force lung air into pulmonary arteries or veins in a similar manner, due to the pressure difference.
This has a good prognosis if it is reversible. Causes include polycythemia and hyperfibrinogenemia.
The epidemiology of pulmonary heart disease (cor pulmonale) accounts for 7% of all heart disease in the U.S. According to Weitzenblum, et al., the mortality that is related to cor pulmonale is not easy to ascertain, as it is a complication of COPD.
Injury to the lung may also cause pulmonary edema through injury to the vasculature and parenchyma of the lung. The acute lung injury-acute respiratory distress syndrome (ALI-ARDS) covers many of these causes, but they may include:
- Inhalation of hot or toxic gases
- Pulmonary contusion, i.e., high-energy trauma (e.g. vehicle accidents)
- Aspiration, e.g., gastric fluid
- Reexpansion, i.e. post large volume thoracocentesis, resolution of pneumothorax, post decortication, removal of endobronchial obstruction, effectively a form of negative pressure pulmonary oedema.
- Reperfusion injury, i.e. postpulmonary thromboendartectomy or lung transplantation
- Swimming induced pulmonary edema also known as immersion pulmonary edema
- Transfusion Associated Circulatory Overload (TACO) occurs when multiple blood transfusions or blood-products (plasma, platelets, etc.) are transfused over a short period of time.
- Transfusion associated Acute Lung Injury (TRALI) is a specific type of blood-product transfusion injury that occurs when the donors plasma contained antibodies against the donor, such as anti-HLA or anti-neutrophil antibodies.
- Severe infection or inflammation which may be local or systemic. This is the classical form of ALI-ARDS.
Some causes of pulmonary edema are less well characterised and arguably represent specific instances of the broader classifications above.
- Arteriovenous malformation
- Hantavirus pulmonary syndrome
- High altitude pulmonary edema (HAPE)
- Envenomation, such as with the venom of Atrax robustus
"Flash pulmonary edema" ("FPE"), is rapid onset pulmonary edema. It is most often precipitated by acute myocardial infarction or mitral regurgitation, but can be caused by aortic regurgitation, heart failure, or almost any cause of elevated left ventricular filling pressures. Treatment of FPE should be directed at the underlying cause, but the mainstays are ensuring adequate oxygenation, diuresis, and decrease of pulmonary circulation pressures.
Recurrence of FPE is thought to be associated with hypertension and may signify renal artery stenosis. Prevention of recurrence is based on managing hypertension, coronary artery disease, renovascular hypertension, and heart failure.
Portopulmonary hypertension (PPH) is defined by the coexistence of portal and pulmonary hypertension. PPH is a serious complication of liver disease, present in 0.25 to 4% of all patients suffering from cirrhosis. Once an absolute contraindication to liver transplantation, it is no longer, thanks to rapid advances in the treatment of this condition. Today, PPH is comorbid in 4-6% of those referred for a liver transplant.
Five million people worldwide are affected by pulmonary fibrosis. A wide range of incidence and prevalence rates have been reported for pulmonary fibrosis. The rates below are per 100,000 persons, and the ranges reflect narrow and broad inclusion criteria, respectively.
Based on these rates, pulmonary fibrosis prevalence in the United States could range from more than 29,000 to almost 132,000, based on the population in 2000 that was 18 years or older. The actual numbers may be significantly higher due to misdiagnosis. Typically, patients are in their forties and fifties when diagnosed while the incidence of idiopathic pulmonary fibrosis increases dramatically after the age of fifty. However, loss of pulmonary function is commonly ascribed to old age, heart disease or to more common lung diseases.
With liver transplantation, the 5 year survival rate is 74%, which is comparable to patients who undergo liver transplants who do not suffer from hepatopulmonary syndrome.
According to a study in cyanotic congenital heart disease (CCHD) in Sohag University, Upper Egypt. 50 neonates were diagnosed as suffering from cyanotic congenital heart disease (CCHD), they concluded that cyanotic congenital heart disease (CCHD) frequency was significant (9.5%) with D-TGA being the commonest type. Majority of neonates with Cyanotic congenital heart disease (CCHD) showed survival with suitable management.
It is sometimes treated with surgery, which involves rerouting blood from the right atrium into the left atrium with a patch or use of the Warden procedure. However, interest is increasing in catheter-based interventional approaches, as well as medical therapy for less severe cases.
The cause of IPF is unknown but certain environmental factors and exposures have been shown to increase the risk of getting IPF. Cigarette smoking is the best recognized and most accepted risk factor for IPF, and increases the risk of IPF by about twofold. Other environmental and occupation exposures such as exposure to metal dust, wood dust, coal dust, silica, stone dust, biologic dusts coming from hay dust or mold spores or other agricultural products, and occupations related to farming/livestock have also been shown to increase the risk for IPF. There is some evidence that viral infections may be associated with idiopathic pulmonary fibrosis and other fibrotic lung diseases.
Pulmonary capillary hemangiomatosis (PCH) is a disease affecting the blood vessels of the lungs, where abnormal capillary proliferation and venous fibrous intimal thickening result in progressive increase in vascular resistance. It is a rare cause of pulmonary hypertension, and occurs predominantly in young adults. Together with pulmonary veno-occlusive disease, PCH comprises WHO Group I' causes for pulmonary hypertension. Indeed, there is some evidence to suggest that PCH and pulmonary veno-occlusive disease are different forms of a similar disease process.
Pulmonary capillary hemangiomatosis patients, families, and caregivers are encouraged to join the Registry NIH Rare Lung Diseases Consortium Contact Registry
Pulmonary vein stenosis is a rare cardiovascular disorder. It is recognized as being the stenosis of one or more of the four pulmonary veins that return blood from the lungs to the left atrium of the heart. In congenital cases, it is associated with poor prognosis and high mortality rate. In some people, pulmonary vein stenosis occurs after pulmonary vein ablation for the treatment of atrial fibrillation. Some recent research has indicated that it may be genetically linked in congenital cases.
IPF has been recognized in several breeds of both dogs and cats, and has been best characterized in West Highland White Terriers. Veterinary patients with the condition share many of the same clinical signs as their human counterparts, including progressive exercise intolerance, increased respiratory rate, and eventual respiratory distress.
Prognosis is generally poor.
In medicine, hepatopulmonary syndrome is a syndrome of shortness of breath and hypoxemia (low oxygen levels in the blood of the arteries) caused by vasodilation (broadening of the blood vessels) in the lungs of patients with liver disease. Dyspnea and hypoxemia are worse in the upright position (which is called platypnea and orthodeoxia, respectively).
Pulmonary fibrosis may be a secondary effect of other diseases. Most of these are classified as interstitial lung diseases. Examples include autoimmune disorders, viral infections and bacterial infection like tuberculosis which may cause fibrotic changes in both lungs upper or lower lobes and other microscopic injuries to the lung. However, pulmonary fibrosis can also appear without any known cause. In this case, it is termed "idiopathic". Most idiopathic cases are diagnosed as "idiopathic pulmonary fibrosis". This is a diagnosis of exclusion of a characteristic set of histologic/pathologic features known as usual interstitial pneumonia (UIP). In either case, there is a growing body of evidence which points to a genetic predisposition in a subset of patients. For example, a mutation in surfactant protein C (SP-C) has been found to exist in some families with a history of pulmonary fibrosis.
Diseases and conditions that may cause pulmonary fibrosis as a secondary effect include:
- Inhalation of environmental and occupational pollutants, such as metals in asbestosis, silicosis and exposure to certain gases. Coal miners, ship workers and sand blasters among others are at higher risk.
- Hypersensitivity pneumonitis, most often resulting from inhaling dust contaminated with bacterial, fungal, or animal products.
- Cigarette smoking can increase the risk or make the illness worse.
- Some typical connective tissue diseases such as rheumatoid arthritis, SLE and scleroderma
- Other diseases that involve connective tissue, such as sarcoidosis and granulomatosis with polyangiitis.
- Infections
- Certain medications, e.g. amiodarone, bleomycin (pingyangmycin), busulfan, methotrexate, apomorphine, and nitrofurantoin
- Radiation therapy to the chest