Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The prognosis of pulmonary arterial hypertension (WHO Group I) has an "untreated" median survival of 2–3 years from time of diagnosis, with the cause of death usually being right ventricular failure (cor pulmonale). A recent outcome study of those patients who had started treatment with bosentan (Tracleer) showed that 89% patients were alive at 2 years. With new therapies, survival rates are increasing. For 2,635 patients enrolled in The Registry to Evaluate Early and Long-term Pulmonary Arterial Hypertension Disease Management (REVEAL Registry) from March 2006 to December 2009, 1-, 3-, 5-, and 7-year survival rates were 85%, 68%, 57%, and 49%, respectively. For patients with idiopathic/familial PAH, survival rates were 91%, 74%, 65%, and 59%. Levels of mortality are very high in pregnant women with severe pulmonary arterial hypertension (WHO Group I). Pregnancy is sometimes described as contraindicated in these women.
The epidemiology of IPAH is about 125–150 deaths per year in the U.S., and worldwide the incidence is similar to the U.S. at 4 cases per million. However, in parts of Europe (France) indications are 6 cases per million of IPAH. Females have a higher incidence rate than males (2–9:1).
Other forms of PH are far more common. In systemic scleroderma, the incidence has been estimated to be 8 to 12% of all patients; in rheumatoid arthritis it is rare. However, in systemic lupus erythematosus it is 4 to 14%, and in sickle cell disease, it ranges from 20 to 40%. Up to 4% of people who suffer a pulmonary embolism go on to develop chronic thromboembolic disease including pulmonary hypertension. A small percentage of patients with COPD develop pulmonary hypertension with no other disease to explain the high pressure. On the other hand, obesity-hypoventilation syndrome is very commonly associated with right heart failure due to pulmonary hypertension.
CTEPH is an orphan disease with an estimated incidence of 5 cases per million, but it is likely that CTEPH is under-diagnosed as symptoms are non-specific. Although a cumulative incidence of CTEPH between 0.1% and 9.1% within the first 2 years after a symptomatic PE has been reported, it is currently unclear whether acute symptomatic PE begets CTEPH. Routine screening for CTEPH after PE is not recommended because a significant number of CTEPH cases develops in the absence of previous acute symptomatic PE. In addition, approximately 25% of patients with CTEPH do not present with a clinical history of acute PE. The median age of patients at diagnosis is 63 years (there is a wide age range, but paediatric cases are rare), and both genders are equally affected.
The epidemiology of pulmonary heart disease (cor pulmonale) accounts for 7% of all heart disease in the U.S. According to Weitzenblum, et al., the mortality that is related to cor pulmonale is not easy to ascertain, as it is a complication of COPD.
Historically the prognosis for patients with untreated CTEPH was poor, with a 5-year survival of 40 mmHg at presentation. More contemporary data from the European CTEPH registry have demonstrated a 70% 3-year survival in patients with CTEPH who do not undergo the surgical procedure of pulmonary endarterectomy (PEA). Recent data from an international CTEPH registry demonstrate that mortality in CTEPH is associated with New York Heart Association (NYHA) functional class IV, increased right atrial pressure, and a history of cancer. Furthermore, comorbidities such as coronary disease, left heart failure, and chronic obstructive pulmonary disease (COPD) are risk factors for mortality.
In terms of the cause of pulmonary atresia, there is uncertainty as to what instigates this congenital heart defect. Potential risk factors that can cause this congenital heart defect are those the pregnant mother may come in contact with, such as:
- Certain medications
- Diet
- Smoking
In treating pulmonary insufficiency, it should be determined if pulmonary hypertension is causing the problem to therefore begin the most appropriate therapy as soon as possible (primary pulmonary hypertension or secondary pulmonary hypertension due to thromboembolism). Furthermore, pulmonary insufficiency is generally treated by addressing the underlying condition, in certain cases, the pulmonary valve may be surgically replaced.
About 90% of emboli are from proximal leg deep vein thromboses (DVTs) or pelvic vein thromboses. DVTs are at risk for dislodging and migrating to the lung circulation. The conditions are generally regarded as a continuum termed "venous thromboembolism" (VTE).
The development of thrombosis is classically due to a group of causes named Virchow's triad (alterations in blood flow, factors in the vessel wall and factors affecting the properties of the blood). Often, more than one risk factor is present.
- "Alterations in blood flow": immobilization (after surgery), injury, pregnancy (also procoagulant), obesity (also procoagulant), cancer (also procoagulant)
- "Factors in the vessel wall": surgery, catheterizations causing direct injury ("endothelial injury")
- "Factors affecting the properties of the blood" (procoagulant state):
- Estrogen-containing hormonal contraception
- Genetic thrombophilia (factor V Leiden, prothrombin mutation G20210A, protein C deficiency, protein S deficiency, antithrombin deficiency, hyperhomocysteinemia and plasminogen/fibrinolysis disorders)
- Acquired thrombophilia (antiphospholipid syndrome, nephrotic syndrome, paroxysmal nocturnal hemoglobinuria)
- Cancer (due to secretion of pro-coagulants)
Preexisting diabetes mellitus of a pregnant mother is a risk factor that has been described for the fetus having TGV.
The epidemiology of pulmonary valve stenosis can be summed up by the congenital aspect which is the majority of cases, in broad terms PVS is rare in the general population.
Some recent research has suggested that a proportion of cases of migraine may be caused by PFO. While the exact mechanism remains unclear, closure of a PFO can reduce symptoms in certain cases. This remains controversial; 20% of the general population has a PFO, which for the most part, is asymptomatic. About 20% of the female population has migraines, and the placebo effect in migraine typically averages around 40%. The high frequency of these facts finding statistically significant relationships between PFO and migraine difficult (i.e., the relationship may just be chance or coincidence). In a large randomized controlled trial, the higher prevalence of PFO in migraine patients was confirmed, but migraine headache cessation was not more prevalent in the group of migraine patients who underwent closure of their PFOs.
Anomalous pulmonary venous connection (or anomalous pulmonary venous drainage or anomalous pulmonary venous return) is a congenital defect of the pulmonary veins.
The causes of pulmonary heart disease (cor pulmonale) are the following:
Pulmonary emboli occur in more than 600,000 people in the United States each year. It results in between 50,000 and 200,000 deaths per year in the United States. The risk in those who are hospitalized is around 1%. The rate of fatal pulmonary emboli has declined from 6% to 2% over the last 25 years in the United States.
The treatment of choice is percutaneous balloon valvuloplasty and is done when a resting peak gradient is seen to be >60mm Hg or a mean >40mm Hg is observed.
Risk factors for thromboembolism, the major cause of arterial embolism, include disturbed blood flow (such as in atrial fibrillation and mitral stenosis), injury or damage to an artery wall, and hypercoagulability (such as increased platelet count). Mitral stenosis poses a high risk of forming emboli which may travel to the brain and cause stroke. Endocarditis increases the risk for thromboembolism, by a mixture of the factors above.
Atherosclerosis in the aorta and other large blood vessels is a common risk factor, both for thromboembolism and cholesterol embolism. The legs and feet are major impact sites for these types. Thus, risk factors for atherosclerosis are risk factors for arterial embolisation as well:
- advanced age
- cigarette smoking
- hypertension (high blood pressure)
- obesity
- hyperlipidemia, e.g. hypercholesterolemia, hypertriglyceridemia, elevated lipoprotein (a) or apolipoprotein B, or decreased levels of HDL cholesterol)
- diabetes mellitus
- Sedentary lifestyle
- stress
Other important risk factors for arterial embolism include:
- recent surgery (both for thromboembolism and air embolism)
- previous stroke or cardiovascular disease
- a history of long-term intravenous therapy (for air embolism)
- Bone fracture (for fat embolism)
A septal defect of the heart makes it possible for paradoxical embolization, which happens when a clot in a vein enters the right side of the heart and passes through a hole into the left side. The clot can then move to an artery and cause arterial embolisation.
Since PDA is usually identified in infants, it is less common in adults, but it can have serious consequences, and is usually corrected surgically upon diagnosis.
In TAPVC without obstruction, surgical redirection can be performed within the first month of life. The operation is performed under general anesthesia. The four pulmonary veins are reconnected to the left atrium, and any associated heart defects such as atrial septal defect, ventricular septal defect, patent foramen ovale, and/or patent ductus arteriosus are surgically closed. With obstruction, surgery should be undertaken emergently. PGE1 should be given because a patent ductus arteriosus allows oxygenated blood to go from the circulation of the right heart to the systemic circulation.
The prognosis for pulmonary atresia varies for every child, if the condition is left uncorrected it may be fatal, but the prognosis has greatly improved over the years for those with pulmonary atresia. Some factors that affect how well the child does include how well the heart is beating, and the condition of the blood vessels that supply the heart. Most cases of pulmonary atresia can be helped with surgery, if the patient's right ventricle is exceptionally small, many surgeries will be needed in order to help stimulate normal circulation of blood to the heart.If uncorrected, babies with this type of congenital heart disease may only survive for the first few days of life. Many children with pulmonary atresia will go on to lead normal lives, though complications such as endocarditis, stroke and seizures are possible.
Tetralogy of Fallot occurs approximately 400 times per million live births and accounts for 7 to 10% of all congenital heart abnormalities.
Persistent truncus arteriosus is a rare cardiac abnormality that has a prevalence of less than 1%.
A PDA is sometimes idiopathic. Known risk factors include:
- Preterm birth
- Congenital rubella syndrome
- Chromosomal abnormalities (e.g., Down syndrome)
- Genetic conditions such as Loeys-Dietz syndrome (would also present with other heart defects), Wiedemann-Steiner syndrome, and CHAR syndrome.
Scimitar syndrome, or congenital pulmonary venolobar syndrome, is a rare congenital heart defect characterized by anomalous venous return from the right lung (to the systemic venous drainage, rather than directly to the left atrium). This anomalous pulmonary venous return can be either partial (PAPVR) or total (TAPVR). The syndrome associated with PAPVR is more commonly known as "Scimitar syndrome" after the curvilinear pattern created on a chest radiograph by the pulmonary veins that drain to the inferior vena cava. This radiographic density often has the shape of a scimitar, a type of curved sword. The syndrome was first described by Catherine Neill in 1960.
Presence of a cystic hygroma increases the risk of HLHS in a fetus.
When pulmonic stenosis (PS) is present, resistance to blood flow causes right ventricular hypertrophy. If right ventricular failure develops, right atrial pressure will increase, and this may result in a persistent opening of the foramen ovale, shunting of unoxygenated blood from the right atrium into the left atrium, and systemic cyanosis. If pulmonary stenosis is severe, congestive heart failure occurs, and systemic venous engorgement will be noted. An associated defect such as a patent ductus arteriosus partially compensates for the obstruction by shunting blood from the left ventricle to the aorta then back to the pulmonary artery (as a result of the higher pressure in the left ventricle) and back into the lungs.