Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is no known cure for little cherry disease and tolerance breeding programs have not yielded any cultivars able to withstand the effects of the disease for more than a few seasons. Thus, prevention of spread has been the focal point in combating the disease.
Long-distance spread of the disease occurs through the planting of infected trees, as well as budding and grafting of infected tissue. To prevent the establishment of the disease, guidelines typically call for testing of rootstocks and budwood before planting, removal of all trees known and suspected to be infected and eradication of ornamental and wild cherry trees from the surrounding area.
Short-distance spread of the disease occurs through transmission of the viruses by insect vectors. Little cherry virus-2 is spread by scale insects of the family Pseudococcidae, primarily the apple mealybug ("Phenacoccus aceris"). In areas where the apple mealybug is commonplace, application of insecticides prior to cutting infected trees are routinely used to stop the spread of little cherry disease within orchards. Little cherry virus-1 is spread by an unknown vector.
Little cherry disease likely originated in Japan and spread with ornamental cherry trees world-wide; many of the top cherry producing nations in the world have reported infections, including USA, Italy and Spain.
Control of Leucostoma Canker is possible through a combination of pest and crop management techniques following life cycles of the trees. The strategy is implemented following techniques aimed at reducing number of pathogenic inoculum, minimizing dead or injured tissues to prevent infection, and improving tree health to improve rapid wound healing. Chemical controls have not been very effective at controlling this disease with no fungicides registered specifically for control of "Leucostoma" spp., and demethylation-inhibiting (DMI) fungicides having almost no effect on "L. persoonii".
Shot hole disease (also called Coryneum blight) is a serious fungal disease that creates BB-sized holes in leaves, rough areas on fruit, and concentric lesions on branches. The pathogen that causes shot hole disease is "Wilsonomyces carpophilus".
Necrotic ring spot is a common disease of turf caused by soil borne fungi (Ophiosphaerella korrae) that mainly infects roots (4). It is an important disease as it destroys the appearance of turfgrasses on park, playing fields and golf courses. Necrotic Ring Spot is caused by a fungal pathogen that is an ascomycete that produces ascospores in an ascocarp (6). They survive over winter, or any unfavorable condition as sclerotia. Most infection occurs in spring and fall when the temperature is about 13 to 28°C (5). The primary hosts of this disease are cool-season grasses such as Kentucky bluegrass and annual bluegrass (6). Once turf is infected with "O. korrae", it kills turf roots and crowns. Symptoms of the disease are quite noticeable since they appear as large yellow ring-shaped patches of dead turf. Management of the disease is often uneasy and requires application of multiple controls. The disease can be controlled by many different kind of controls including chemicals and cultural.
Leucostoma canker is a fungal disease that can kill stone fruit ("Prunus" spp.). The disease is caused by the plant pathogens "Leucostoma persoonii" and "Leucostoma cinctum" (teleomorph) and "Cytospora leucostoma" and "Cytospora cincta" (anamorphs). The disease can have a variety of signs and symptoms depending on the part of the tree infected. One of the most lethal symptoms of the disease are the Leucostoma cankers. The severity of the Leucostoma cankers is dependent on the part of the plant infected. The fungus infects through injured, dying or dead tissues of the trees. Disease management can consist of cultural management practices such as pruning, late season fertilizers or chemical management through measures such as insect control. Leucostoma canker of stone fruit can cause significant economic losses due to reduced fruit production or disease management practices. It is one of the most important diseases of stone fruit tree all over the world.
"W. carpophilus" can remain viable for several months and spores are often airborne. Since the fungi thrive in wet conditions, overhead watering should be avoided. Remove and dispose of any infected buds, leaves, fruit and twigs. In fall, fixed copper or Bordeaux mixture can be applied.
Dead arm, sometimes grape canker, is a disease of grapes caused by a deep-seated wood rot of the arms or trunk of the grapevine. As the disease progresses over several years, one or more arms may die, hence the name "dead arm". Eventually the whole vine will die. In the 1970s, dead-arm was identified as really being two diseases, caused by two different fungi, "Eutypa lata" and "Phomopsis viticola" (syn. "Cryptosporella viticola").
Dead arm is a disease that causes symptoms in the common grapevine species, "vitis vinifera", in many regions of the world. This disease is mainly caused by the fungal pathogen, "Phomopsis viticola", and is known to affect many cultivars of table grapes, such as Thompson Seedless, Red Globe, and Flame Seedless. Early in the growing season, the disease can delay the growth of the plant and cause leaves to turn yellow and curl. Small, brown spots on the shoots and leaf veins are very common first symptoms of this disease. Soil moisture and temperature can impact the severity of symptoms, leading to a systemic infection in warm, wet conditions. As the name of this disease suggests, it also causes one or more arms of the grapevine to die, often leading to death of the entire vine.
Necrotic ring spot can be managed through chemical and cultural controls. Cultural control includes the use of ammonium sulfate or other acidifying fertilizers to suppress the pathogen by lowering the pH of the soil to between 6.0 and 6.2. The more acidic soil discourages the activity of "O. korrae" (9) When reducing pH to these levels, additional manganese applications should be undertaken to compensate for lower pH. As of now, there are only two resistant cultivars of bluegrass, which are ‘Riviera’, and ‘Patriot’ (9). One component of their resistance could be that they are tolerant to low temperature, because the grass is more susceptible to the pathogen under colder temperatures(8). In addition, reducing watering inputs and growing turf on well drained soils can lessen disease symptoms.
Many different fungicides are used to control the pathogen, Fenarimol, Propiconazole, Myclobutanil, and Azoxystrobin (8). Historically, Fenarimol and Myclobutanil were predominantly used (14). In a study where diluted pesticides were sprayed throughout infested test plots, Fenarimol was found to be the most effective with a 94.6% reduction of the disease. Myclobutanil also decreased the amount of disease, but only by 37.7% (8). Myclobutanil is generally recognized as a very weakly acting demethylation inhibitor (DMI) fungicide and fenarimol is no longer registered for turf so a number of other DMI fungicides have been employed successfully, including Propiconazole, Tebuconazole, Metconazole and others. Pyraclostrobin and Fluoxastrobin have also been used to control the pathogen.
Beet vascular necrosis and rot is a soft rot disease caused by the bacterium Pectobacterium carotovorum" subsp. "betavasculorum, which has also been known as "Pectobacterium betavasculorum" and "Erwinia carotovora" subsp. "betavasculorum". It was classified in the genus "Erwinia" until genetic evidence suggested that it belongs to its own group; however, the name Erwinia is still in use. As such, the disease is sometimes called Erwinia rot today. It is a very destructive disease that has been reported across the United States as well as in Egypt. Symptoms include wilting and black streaks on the leaves and petioles. It is usually not fatal to the plant, but in severe cases the beets will become hollowed and unmarketable. The bacteria is a generalist species which rots beets and other plants by secreting digestive enzymes that break down the cell wall and parenchyma tissues. The bacteria thrive in warm and wet conditions, but cannot survive long in fallow soil. However, it is able to persist for long periods of time in the rhizosphere of weeds and non-host crops. While it is difficult to eradicate, there are cultural practices that can be used to control the spread of the disease, such as avoiding injury to the plants and reducing or eliminating application of nitrogen fertilizer.
Bacterial leaf streak (BLS), also known as black chaff, is a common bacterial disease of wheat. The disease is caused by the bacterial species "Xanthomonas translucens" pv. undulosa. The pathogen is found globally, but is a primary problem in the US in the lower mid-south and can reduce yields by up to 40 percent. BLS is primarily seed-borne (the disease is transmitted by seed) and survives in and on the seed, but may also survive in crop residue in the soil in the off-season. During the growing season, the bacteria may transfer from plant to plant by contact, but it is primarily spread by rain, wind and insect contact. The bacteria thrives in moist environments, and produces a cream to yellow bacterial ooze, which, when dry, appears light colored and scale-like, resulting in a streak on the leaves. The invasion of the head of wheat causes bands of necrotic tissue on the awns, which is called Black Chaff.
The disease is not easily managed, as there are no pesticides on the market for treatment of the infection. There are some resistant cultivars available, but no seed treatment exists. Some integrated pest management (IPM) techniques may be used to assist with preventing infection although, none will completely prevent the disease.
The disease can tolerate warm or freezing temperature, but favorable conditions for the disease include wet and humid weather. Irrigated fields provide a favorable environment for the disease. The disease has become quite prevalent in semi-tropical regions, but can found all over the world where wheat is grown. Strong winds that blow soils help contribute to the spread of disease. When the spread is initiated by wind blown soil particles, symptoms will be found most readily towards the edges of the field.
The bacteria can survive in the rhizosphere of other crops such as tomato, carrots, sweet potato, radish, and squash as well as weed plants like lupin and pigweed, so it is very hard to get rid of it completely. When it is known that the bacterium is present in the soil, planting resistant varieties can be the best defense against the disease. Many available beet cultivars are resistant to "Pectobacterium carotovorum" subsp. "betavasculorum", and some examples are provided in the corresponding table. A comprehensive list is maintained by the USDA on the Germplasm Resources Information Network.
Even though some genes associated with root defense response have been identified, the specific mechanism of resistance is unknown, and it is currently being researched.
In cases where a large dermonecrotic lesion has developed, sometimes surgery is attempted to remove the dead tissue. This is not ideal, since it will usually leave a large open sore behind, but in certain cases, still occurs. Skin graft to cover the ulcer are rarely needed but may help with appearance.
Coral diseases, comprising the diseases that affect corals, injure the living tissues and often result in the death of part or the whole of the colony. These diseases have been occurring more frequently in the twenty-first century as conditions become more stressful for many shallow-water corals. The pathogens causing the diseases include bacteria, fungi and protozoa, but it is not always possible to identify the pathogen involved.
Loxoscelism () is a condition occasionally produced by the bite of the recluse spiders (genus "Loxosceles"). The area becomes dusky and a deep open sore forms as the skin around the bite dies (necrosis). It is the only proven type of necrotic arachnidism in humans. While there is no known therapy effective for loxoscelism, there has been research on antibiotics, surgical timing, hyperbaric oxygen, potential antivenoms and vaccines. Because of the number of diseases that may mimic loxoscelism, it is frequently misdiagnosed by physicians.
Loxoscelism was first described in the United States in 1879 in Tennessee. Although there are up to 13 different "Loxosceles" species in North America (11 native and two nonnative), "Loxosceles reclusa" is the species most often involved in serious envenomation. "Loxosceles reclusa" has a limited habitat that includes the Southeast United States. In South America, "L. laeta", "L. intermedia" (found in Brazil and Argentina), and "L. gaucho" (Brazil) are the three species most often reported to cause necrotic bites.
Infected fish should be moved into high quality water, where they may recover if their clinical signs are mild.
If disease occurs eradication is required. Once the disease is eradicated good husbandry, surveillance and biosecurity measures are necessary to prevent recurrence. In countries free of epizootic ulcerative syndrome, quarantine and health certificates are necessary for the movement of all live fish to prevent the introduction of the disease.
Epizootic ulcerative syndrome (EUS), also known as mycotic granulomatosis (MG) or red spot disease (RSD), is a disease caused by the water mould "Aphanomyces invadans". It infects many freshwater and brackish fish species in the Asia-Pacific region and Australia. The disease is most commonly seen when there are low temperature and heavy rainfall in tropical and sub-tropical waters.
An escharotic is a substance that causes tissue to die and slough off. Examples include acids, alkalis, carbon dioxide, metallic salts and sanguinarine, as well as certain medicines like imiquimod. Escharotics known as black salves, containing ingredients such as zinc chloride and sanguinarine containing bloodroot extracts, were traditionally used in herbal medicine as topical treatments for localised skin cancers, but often cause scarring and can potentially cause serious injury and disfigurement. Consequently, escharotic salves are very strictly regulated in most western countries and while some prescription medicines are available with this effect, unauthorized sales are illegal. Some prosecutions have been pursued over unlicensed sales of escharotic products such as Cansema.
In laboratory animals, prevention includes a low-stress environment, an adequate amount of nutritional feed, and appropriate sanitation measurements. Because animals likely ingest bacterial spores from contaminated bedding and feed, regular cleaning is a helpful method of prevention. No prevention methods are currently available for wild animal populations.
Early reports indicated that the disorder was affected by climate and growing conditions. Dry weather before harvest seemed to increase the condition. Light crops, heavy use of fertilizers, large fruit and early harvesting increased the condition. Fruit that were free of bitter pit at harvest were often severely affected after a short period of storage. Bitter pit has been widely reviewed over many decades.
The disorder became a major problem for exports from the Southern Hemisphere to Europe. The breakthrough in control came with the discovery in North America that the mineral calcium was low in affected fruit. This was confirmed elsewhere.
Corals growing in the Caribbean Sea are particularly affected by disease, perhaps because of the limited water circulation and the density of the human population on the surrounding land masses. Disease is also present in the tropical Indo-Pacific, but it is not so widespread, perhaps because of the more dispersed locations of the reefs.
Several decades of research in several countries with many cultivars showed that moderate levels of bitter pit could be controlled with the spraying of the trees with calcium chloride or calcium nitrate during the growing season. However, in the southern hemisphere where highly susceptible fruit had to be harvested early for export to Europe, the problem remained. An attempt to increase the calcium content by applying calcium after harvest had resulted in severe injury to the fruit. Export of susceptible apples from New Zealand was under threat and new methods for controlling bitter pit were investigated. While it was shown that bitter pit was reduced as calcium levels rose, it was not possible to determine a minimum level of calcium that would ensure that the disorder was controlled. The most effective treatment found for closed calyx fruit was to submerge the fruit in the calcium chloride solution and to apply a vacuum and immediately rinsing in water. This overcame the injury problem and gave much better control of the disorder. The vacuum treatment was commercialized in New Zealand for the Cox's Orange Pippin cultivar in 1978 and was used for several years. However the treatment was expensive and could not be used for open calyx cultivars.
A simpler treatment was developed in Western Australia and was adopted in Australia and in New Zealand. This involved dipping the fruit in the calcium solution and rinsing in water after about 36 hours. This treatment has been confirmed by independent workers and has generally been adopted in Australia and New Zealand. Postharvest dipping in a calcium solution has been recommended in some other countries where bitter pit is severe. However the problem of fruit injury does not seem to have been addressed.
It appears that bitter pit can generally be reduced by using good horticultural practices. Usually spraying throughout the growing season with a calcium salt is also necessary for moderately susceptible cultivars. It is more difficult to control storage pit in highly susceptible cultivars as field spraying may not be able to apply sufficient calcium to the fruit. Improved control can be obtained by also dipping the fruit in a 2-3 per cent calcium chloride solution after harvest and rinsing the fruit in water after about 36 hours.
Calcium deficiency symptoms appear initially as localized tissue necrosis leading to stunted plant growth, necrotic leaf margins on young leaves or curling of the leaves, and eventual death of terminal buds and root tips. Generally, the new growth and rapidly growing tissues of the plant are affected first. The mature leaves are rarely if ever affected because calcium accumulates to high concentrations in older leaves.
Crop-specific symptoms include:
- Apple : 'Bitter pit' – fruit skins develop pits, brown spots appear on skin and/or in flesh and taste of those areas is bitter. This usually occurs when fruit is in storage, and Bramley apples are particularly susceptible. Related to boron deficiency, "water cored" apples seldom display bitter pit effects.
- Cabbage and Brussels sprouts : Internal browning and "tip burn"
- Carrot : 'Cavity spot' – oval spots develop into craters which may be invaded by other disease-causing organisms.
- Celery : Stunted growth, central leaves stunted.
- Tomatoes and peppers: 'Blossom end rot' – Symptoms start as sunken, dry decaying areas at the blossom end of the fruit, furthest away from the stem, not all fruit on a truss is necessarily affected. Sometimes rapid growth from high-nitrogen fertilizers may exacerbate blossom end rot. Water management and preventing water stress is key to minimizing its occurrence.