Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Glucocorticoid deficiency 1 (FGD or GCCD) is an adrenocortical failure characterized by low levels of plasma cortisol produced by the adrenal gland despite high levels of plasma ACTH. This is an inherited disorder with several different causes which define the type.
FGD type 1 (FGD1 or GCCD1) is caused by mutations in the ACTH receptor (melanocortin 2 receptor; MC2R). FGD type 2 is caused by mutations in the MC2R accessory protein (MRAP). These two types account for 45% of all cases of FGD.
Some cases of FGD type 3 are caused by mutations in the steroidogenic acute regulatory protein (StAR), with similarity to the nonclassic form of lipoid congenital adrenal hyperplasia. In this case, a general impairment in not just adrenal steroid production, but gonadal steroid production can affect sexual development and fertility.
The causes of other cases of FGD type 3 not due to StAR are currently unknown.
Plasma cells, also called plasma B cells, plasmocytes, plasmacytes, or effector B cells, are white blood cells that secrete large volumes of antibodies. They are transported by the blood plasma and the lymphatic system. Plasma cells originate in the bone marrow; B cells differentiate into plasma cells that produce antibody molecules closely modelled after the receptors of the precursor B cell. Once released into the blood and lymph, these antibody molecules bind to the target antigen (foreign substance) and initiate its neutralization or destruction.
At the Mayo Clinic, MGUS transformed into multiple myeloma or similar lymphoproliferative disorder at the rate of about 1-2% a year, or 17%, 34%, and 39% at 10, 20, and 25 years, respectively, of follow-up—among surviving patients. However, because they were elderly, most patients with MGUS died of something else and did not go on to develop multiple myeloma. When this was taken into account, only 11.2% developed lymphoproliferative disorders.
Kyle studied the prevalence of myeloma in the population as a whole (not clinic patients) in Olmsted County, Minnesota. They found that the prevalence of MGUS was 3.2% in people above 50, with a slight male predominance (4.0% vs. 2.7%). Prevalence increased with age: of people over 70 up to 5.3% had MGUS, while in the over-85 age group the prevalence was 7.5%. In the majority of cases (63.5%), the paraprotein level was <1 g/dl, while only a very small group had levels over 2 g/dl. A study of monoclonal protein levels conducted in Ghana showed a prevalence of MGUS of approximately 5.9% in African men over the age of 50.
In 2009, prospective data demonstrated that all or almost all cases of multiple myeloma are preceded by MGUS. In addition to multiple myeloma, MGUS may also progress to Waldenström's macroglobulinemia, primary amyloidosis, B-cell lymphoma, or chronic lymphocytic leukemia.
Neutrophils (also known as neutrocytes) are the most abundant type of granulocytes and the most abundant (40% to 70%) type of white blood cells in most mammals. They form an essential part of the innate immune system. Their functions vary in different animals.
They are formed from stem cells in the bone marrow. They are short-lived and highly motile, or mobile, as they can enter parts of tissue where other cells/molecules cannot. Neutrophils may be subdivided into segmented neutrophils and banded neutrophils (or bands). They form part of the polymorphonuclear cells family (PMNs) together with basophils and eosinophils.
The name "neutrophil" derives from staining characteristics on hematoxylin and eosin (H&E) histological or cytological preparations. Whereas basophilic white blood cells stain dark blue and eosinophilic white blood cells stain bright red, neutrophils stain a neutral pink. Normally, neutrophils contain a nucleus divided into 2–5 lobes.
Neutrophils are a type of phagocyte and are normally found in the bloodstream. During the beginning (acute) phase of inflammation, particularly as a result of bacterial infection, environmental exposure, and some cancers, neutrophils are one of the first-responders of inflammatory cells to migrate towards the site of inflammation. They migrate through the blood vessels, then through tissue, following chemical signals such as Interleukin-8 (IL-8), C5a, fMLP, Leukotriene B4 and HO in a process called chemotaxis. They are the predominant cells in pus, accounting for its whitish/yellowish appearance.
Neutrophils are recruited to the site of injury within minutes following trauma, and are the hallmark of acute inflammation; however, due to some pathogens being indigestible, they can be unable to resolve certain infections without the assistance of other types of immune cells.
The Xanthogranulomatous Process (XP), also known as Xanthogranulomatous Inflammation is a form of acute and chronic inflammation characterized by an exuberant clustering of foamy macrophages among other inflammatory cells. Localization in the kidney and renal pelvis has been the most frequent and better known occurrence followed by that in the gallbladder but many others have been subsequently recorded. The pathological findings of the process and etiopathogenetic and clinical observations have been reviewed by Cozzutto and Carbone.
The incidence of acute TTP in adults is around 1.7–4.5 per million and year. These cases are nearly all due to the autoimmune form of TTP, where autoantibodies inhibit ADAMTS13 activity. The prevalence of USS has not yet been determined but is assumed to constitute less than 5% of all acute TTP cases. The syndrome's inheritance is autosomal recessive, and is more often caused by compound heterozygous than homozygous mutations. The age of onset is variable and can be from neonatal age up to the 5th–6th decade. The risk of relapses differs between affected individuals. Minimization of the burden of disease can be reached by early diagnosis and initiation of prophylaxis if required.
Adipose tissue macrophages (abbr. ATMs) comprise tissue resident macrophages present in adipose tissue. Adipose tissue apart from adipocytes is composed of the stromal vascular fraction (SVF) of cells including preadipocytes, fibroblasts, vascular endothelial cells and variety of immune cells. The latter ones are composed of mast cells, eosinophils, B cells, T cells and macrophages. The number of macrophages within adipose tissue differs depending on the metabolic status. As discovered by Rudolph Leibel and Anthony Ferrante et al. in 2003 at Columbia University, the percentage of macrophages within adipose tissue ranges from 10% in lean mice and humans up to 50% in extremely obese, leptin deficient mice and almost 40% in obese humans. Increased number of adipose tissue macrophages correlates with increased adipose tissue production of proinflammatory molecules and might therefore contribute to the pathophysiological consequences of obesity (e.g. insulin resistance, type 2 diabetes).
Pathologically, the lesion in MGUS is in fact very similar to that in multiple myeloma. There is a predominance of clonal plasma cells in the bone marrow with an abnormal immunophenotype (CD38+ CD56+ CD19−) mixed in with cells of a normal phenotype (CD38+ CD56− CD19+); in MGUS, on average more than 3% of the clonal plasma cells have the normal phenotype, whereas in multiple myeloma, less than 3% of the cells have the normal phenotype. What causes MGUS to transform into multiple myeloma is as yet unknown.
In medicine, Aschoff bodies are nodules found in the hearts of individuals with rheumatic fever. They result from inflammation in the heart muscle and are characteristic of rheumatic heart disease. These nodules were discovered independently by Ludwig Aschoff and Paul Rudolf Geipel, and for this reason they are occasionally called Aschoff-Geipel bodies.
Basophils are a type of white blood cells. Basophils are the least common of the granulocytes, representing about 0.5 to 1% of circulating white blood cells. However, they are the largest type of granulocyte. They are responsible for inflammatory reactions during immune response, as well as in the formation of acute and chronic allergic diseases, including anaphylaxis, asthma, atopic dermatitis and hay fever. They can perform phagocytosis (cell eating), produce histamine and serotonin that induce inflammation, and heparin that prevents blood clotting. It used to be thought that basophils that have migrated from blood into their resident tissues (connective tissue) are known as mast cells, but this is no longer thought to be the case.
Basophils were discovered in 1879 by German physician Paul Ehrlich, who one year earlier had found a cell type present in tissues that he termed "mastzellen" (now mast cells). Ehrlich received the 1908 Nobel Prize in Physiology or Medicine for his discoveries.
The name comes from the fact that these leukocytes are basophilic, i.e., they are susceptible to staining by basic dyes, as shown in the picture.
While the main features of this paraneoplastic disease have been described, the exact mechanism behind its development, progression, and manifestations remain elusive. Overproduction of the myeloma protein and VEGF may underlie some, but are insufficient to explain all, of the multi-organ features of the disease. It is suggested that various other cytokines produced by the clonal plasma cells, perhaps working in concert with each other as well as with VEGF and the myeloma proteins, mediate many of the features of POEMS syndrome. The other cytokines detected in, and suspected of contributing to, POEMS syndrome include interleukin 1β, interleukin 6, and TNFα. Nonetheless, it seems likely that some of these paraneoplastic factors, operating individually, make a major contribution to certain features of the disease. For example, VEGF, given its ability to stimulate blood vessel formation, would seem likely to be the major contributor to the pathologic hyper-vascularization changes seem in many tissues, such as lymph nodes, afflicted by POEMS syndrome.
POEMS syndrome (also termed osteosclerotic myeloma, Crow–Fukase syndrome, Takatsuki disease, or PEP syndrome) is a rare paraneoplastic syndrome caused by a clone of aberrant plasma cells. The name POEMS is an acronym for some of the disease's major signs and symptoms (polyneuropathy, organomegaly, endocrinopathy, myeloma protein, and skin changes), as is PEP (polyneuropathy, endocrinopathy, plasma cell dyscrasia).
The signs and symptoms of most neoplasms are due to their mass effects caused by the invasion and destruction of tissues by the neoplasms' cells. Signs and symptoms of a cancer causing a paraneoplastic syndrome result from the release of humoral factors such as hormones, cytokines, or immunoglobulins by the syndrome's neoplastic cells and/or the response of the immune system to the neoplasm. Many of the signs and symptoms in POEMS syndrome are due at least in part to the release of an aberrant immunoglobulin, i.e. a myeloma protein, as well as certain cytokines by the malignant plasma cells.
POEMS syndrome typically begins in middle age – the average age at onset is 50 – and affects up to twice as many men as women.
Treatment of LPI consists of protein-restricted diet and supplementation with oral citrulline. Citrulline is a neutral amino acid that improves the function of the urea cycle and allows sufficient protein intake without hyperammonemia. Under proper dietary control and supplementation, the majority of the LPI patients are able to have a nearly normal life. However, severe complications including pulmonary alveolar proteinosis and renal insufficiency may develop even with proper treatment.
Fertility appears to be normal in women, but mothers with LPI have an increased risk for complications during pregnancy and delivery.
Globally, multiple myeloma affected 488,000 people and resulted in 101,100 deaths in 2015. This is up from 49,000 in 1990.
Low neutrophil counts are termed "neutropenia". This can be congenital (developed at or before birth) or it can develop later, as in the case of aplastic anemia or some kinds of leukemia. It can also be a side-effect of medication, most prominently chemotherapy. Neutropenia makes an individual highly susceptible to infections. It can also be the result of colonization by intracellular neutrophilic parasites.
In alpha 1-antitrypsin deficiency, the important neutrophil enzyme elastase is not adequately inhibited by alpha 1-antitrypsin, leading to excessive tissue damage in the presence of inflammation – the most prominent one being pulmonary emphysema.
In Familial Mediterranean fever (FMF), a mutation in the "pyrin" (or "marenostrin") gene, which is expressed mainly in neutrophil granulocytes, leads to a constitutively active acute-phase response and causes attacks of fever, arthralgia, peritonitis, and – eventually – amyloidosis.
Decreases in neutrophil function have been linked to hyperglycemia. Dysfunction in the neutrophil biochemical pathway myeloperoxidase as well as reduced degranulation are associated with hyperglycemia.
The Absolute neutrophil count (ANC) is also used in diagnosis and prognosis. ANC is the gold standard for determining severity of neutropenia, and thus neutropenic fever. Any ANC < 1500 cells / mm is considered neutropenia, but <500 cells / mm is considered severe. There is also new research tying ANC to myocardial infarction as an aid in early diagnosis.
Plasma cell granuloma is a lesional pattern of inflammatory pseudotumour, different from the "inflammatory myofibroblastic tumor" pattern.
It is linked to IgG4-related disease.
Galactose epimerase deficiency, also known as GALE deficiency, Galactosemia III and UDP-galactose-4-epimerase deficiency, is a rare, autosomal recessive form of galactosemia associated with a deficiency of the enzyme "galactose epimerase".
Evidence suggests that dietary vitamin D may be carried by lipoprotein particles into cells of the artery wall and atherosclerotic plaque, where it may be converted to active form by monocyte-macrophages. This raises questions regarding the effects of vitamin D intake on atherosclerotic calcification and cardiovascular risk as it may be causing vascular calcification. Calcifediol is implicated in the etiology of atherosclerosis, especially in non-Caucasians.
The levels of the active form of vitamin D, calcitriol, are inversely correlated with coronary calcification. Moreover, the active vitamin D analog, alfacalcidol, seems to protect patients from developing vascular calcification. Serum vitamin D has been found to correlate with calcified atherosclerotic plaque in African Americans as they have higher active serum vitamin D levels compared to Euro-Americans. Higher levels of calcidiol positively correlate with aorta and carotid calcified atherosclerotic plaque in African Americans but not with coronary plaque, whereas individuals of European descent have an opposite, negative association. There are racial differences in the association of coronary calcified plaque in that there is less calcified atherosclerotic plaque in the coronary arteries of African-Americans than in whites.
A case control study on a population in southern India found that more than 50% of patients with ischaemic heart disease had serum levels of vitamin D higher than 222.5 nmol/L, but the study did not evaluate causation.
Among descent groups with heavy sun exposure during their evolution, taking supplemental vitamin D to attain the 25(OH)D level associated with optimal health in studies done with mainly European populations may have deleterious outcomes. Despite abundant sunshine in India, vitamin D status in Indians are low and suggests a public health need to fortify Indian foods with vitamin D. However, the levels found in India are consistent with many other studies of tropical populations which have found that even an extreme amount of sun exposure, does not raise 25(OH)D levels to the levels typically found in Europeans.
Recommendations stemming for a single standard for optimal serum 25(OH)D concentrations ignores the differing genetically mediated determinates of serum 25(OH)D and may result in ethnic minorities in Western countries having the results of studies done with subjects not representative of ethnic diversity applied to them. Vitamin D levels vary for genetically mediated reasons as well as environmental ones.
A deficiency of vitamin B alone is relatively uncommon and often occurs in association with other vitamins of the B complex. The elderly and alcoholics have an increased risk of vitamin B deficiency, as well as other micronutrient deficiencies. Evidence exists for decreased levels of vitamin B in women with type 1 diabetes and in patients with systemic inflammation, liver disease, rheumatoid arthritis, and those infected with HIV. Use of oral contraceptives and treatment with certain anticonvulsants, isoniazid, cycloserine, penicillamine, and hydrocortisone negatively impact vitamin B status. Hemodialysis reduces vitamin B plasma levels.
"The phenotypic parameters that define a ciliopathy may be used to both recognize the cellular basis of a number of genetic disorders and to facilitate the diagnosis and treatment of some diseases of unknown" cause.
The xanthogranulomatous type of inflammation is most-commonly seen in pyelonephritis and cholecystitis, although it has more recently been described in an array of other locations including bronchi, lung, endometrium, vagina, fallopian tubes, ovary, testis, epydidymis, stomach, colon, ileum, pancreas, bone, lymph nodes, bladder, adrenal gland, abdomen and muscle. Telling apart clinically a XP from a tumor condition can be challenging as pointed out by several authors. Cozzutto and Carbone suggested that a wide array of entities characterized by a large content of histiocytes and foamy macrophages could be traced back at least in part to a xanthogranulomatous inflammation. These include such varied disturbances as xanthoma disseminatum, ceroid granuloma of the gallbladder, Whipple's disease, inflammatory pseudotumor of the lung, plasma cell granuloma of the lung, malakoplakia, verruciform xanthoma, foamy histiocytosis of the spleen in thrombocytopenic purpura, isolated xanthoma of the small bowel, xanthofibroma of bone, and gastric xanthelasma.
A pathogenetic model might be suggested as follows:
1. suppuration, hemorrhage and necrosis,
2. granulomatous tissue with granular histiocytes and foamy macrophages,
3. fibrohistiocytoma-like or plasma cell granuloma-like patterns,
4. possible myofibroblast metaplasia.
A reactive fibrohistiocytic lesion simulating fibrous histiocytoma has been reported by Snover et al. Reactive granular cells in sites of trauma have been regarded of histiocytic nature. Sinus histiocytosis with massive lymphadenopathy (Rosai-Dorfman disease) might share several aspects of the XP. Likewise there might be some superimpositions between the XP and the plasma cell granuloma/histiocytoma-inflammatory myofibroblastic tumor complex.> The XP might be an important stage of this complex.
Plasma cell leukemia (PCL) is a plasma cell dyscrasia, i.e. a disease involving the malignant degeneration of a subtype of white blood cells called plasma cells. It is the terminal stage and most aggressive form of these dyscrasias, constituting 2% to 4% of all cases of plasma cell malignancies. PCL may present as primary plasma cell leukemia, i.e. in patients without prior history of a plasma cell dyscrasia or as secondary plasma cell dyscrasia, i.e. in patients previously diagnosed with a history of its predecessor dyscrasia, multiple myeloma. The two forms of PCL appear to be at least partially distinct from each other. In all cases, however, PCL is an extremely serious, life-threatening, and therapeutically challenging disease.
Plasmacytoma, multiple myeloma, Waldenström macroglobulinemia and plasma cell leukemia are malignant neoplasms ("cancer") of the plasma cells. Multiple myeloma is frequently identified because malignant plasma cells continue producing an antibody, which can be detected as a paraprotein.
Common variable immunodeficiency is thought to be due to a problem in the differentiation from lymphocytes to plasma cells. The result is a low serum antibody level and risk of infections.
Primary amyloidosis (AL) is caused by the deposition of excess immunoglobulin light chains which are secreted from plasma cells.
Possible ethnic differences in physiological pathways for ingested vitamin D, such as the Inuit, may confound across the board recommendations for vitamin D levels. Inuit compensate for lower production of vitamin D by converting more of this vitamin to its most active form.
A Toronto study of young Canadians of diverse ancestry applied a standard of serum 25(OH)D levels that was significantly higher than official recommendations. These levels were described to be 75 nmol/L as "optimal", between 75 nmol/L and 50 nmol/L as "insufficient" and < 50 nmol/L as "deficient". 22% of individuals of European ancestry had 25(OH)D levels less than the 40 nmol/L cutoff, comparable to the values observed in previous studies (40nmol/L is 15 ng/mL). 78% of individuals of East Asian ancestry and 77% of individuals of South Asian ancestry had 25(OH)D concentrations lower than 40 nmol/L. The East Asians in the Toronto sample had low 25(OH)D levels when compared to whites. In a Chinese population at particular risk for esophageal cancer and with the high serum 25(OH)D concentrations have a significantly increased risk of the precursor lesion.
Studies on the South Asians population uniformly point to low 25(OH)D levels, despite abundant sunshine. Rural men around Delhi average 44nmol/L. Healthy Indians seem have low 25(OH)D levels which are not very different from healthy South Asians living in Canada. South Indian patients with ischemic heart disease have serum 25-hydroxyvitamin D levels which are above 222.5 nmol/l and considered extremely high. Measuring melanin content to assess skin pigmentation showed an inverse relationship with serum 25(OH)D. The uniform occurrence of very low serum 25(OH)D in Indians living in India and Chinese in China does not support the hypothesis that the low levels seen in the more pigmented are due to lack of synthesis from the sun at higher latitudes.
A study of French Canadians found that a significant minority did not maximize ingested serum 25(OH)D for genetic reasons; vitamin D-binding protein polymorphisms explained as much of the variation in circulating 25(OH)D as did total ingestion of vitamin D.
Multiple myeloma affects many other species. The disease has been diagnosed in dogs, cats, and horses.
In dogs, multiple myeloma accounts for around 8% of all haemopoietic tumors. Multiple myeloma occurs in older dogs, and is not particularly associated with either males or females. No breeds appear overrepresented in case reviews that have been conducted. Diagnosis in dogs is usually delayed due to the initial non specificity and range of clinical signs possible. Diagnosis usually involves bone marrow studies, X-rays, and plasma protein studies. In dogs, protein studies usually reveal the monoclonal gammaglobulin elevation to be IgA or IgG in equal incidence. In rare cases the globulin elevation is IgM, which is referred to as Waldenström's macroglobulinemia. The prognosis for initial control and return to good quality of life in dogs is good. 43% of dogs started on a combination chemotherapeutic protocol achieved complete remission. Long-term survival is normal, with a median of 540 days reported. The disease eventually recurs, becoming resistant to available therapies. The complications of kidney failure, sepsis, or pain can lead to an animal's death, frequently by euthanasia.