Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A number of factors have been identified that are linked to a higher risk of a preterm birth such as being less than 18 years of age. Maternal height and weight can play a role.
Further, in the US and the UK, black women have preterm birth rates of 15–18%, more than double than that of the white population. Filipinos are also at high risk of premature birth, and it is believed that nearly 11-15% of Filipinos born in the U.S. (compared to other Asians at 7.6% and whites at 7.8%) are premature. Filipinos being a big risk factor is evidenced with the Philippines being the 8th highest ranking in the world for preterm births, the only non-African country in the top 10. This discrepancy is not seen in comparison to other Asian groups or Hispanic immigrants and remains unexplained.
Pregnancy interval makes a difference as women with a six-month span or less between pregnancies have a two-fold increase in preterm birth. Studies on type of work and physical activity have given conflicting results, but it is opined that stressful conditions, hard labor, and long hours are probably linked to preterm birth.
A history of spontaneous (i.e., miscarriage) or surgical abortion has been associated with a small increase in the risk of preterm birth, with an increased risk with increased number of abortions, although it is unclear whether the increase is caused by the abortion or by confounding risk factors (e.g., socioeconomic status). Increased risk has not been shown in women who terminated their pregnancies medically. Pregnancies that are unwanted or unintended are also a risk factor for preterm birth.
Adequate maternal nutrition is important. Women with a low BMI are at increased risk for preterm birth. Further, women with poor nutrition status may also be deficient in vitamins and minerals. Adequate nutrition is critical for fetal development and a diet low in saturated fat and cholesterol may help reduce the risk of a preterm delivery. Obesity does not directly lead to preterm birth; however, it is associated with diabetes and hypertension which are risk factors by themselves. To some degree those individuals may have underlying conditions (i.e., uterine malformation, hypertension, diabetes) that persist.
Women with celiac disease have an increased risk of the development of preterm birth. The risk of preterm birth is more elevated when celiac disease remains undiagnosed and untreated.
Marital status is associated with risk for preterm birth. A study of 25,373 pregnancies in Finland revealed that unmarried mothers had more preterm deliveries than married mothers (P=0.001). Pregnancy outside of marriage was associated overall with a 20% increase in total adverse outcomes, even at a time when Finland provided free maternity care. A study in Quebec of 720,586 births from 1990 to 1997 revealed less risk of preterm birth for infants with legally married mothers compared with those with common-law wed or unwed parents.
Genetic make-up is a factor in the causality of preterm birth. Genetics has been a big factor into why Filipinos have a high risk of premature birth as the Filipinos have a large prevalence of mutations that help them be predisposed to premature births. An intra- and transgenerational increase in the risk of preterm delivery has been demonstrated. No single gene has been identified.
Subfertility is associated with preterm birth. Couples who have tried more than 1 year versus those who have tried less than 1 year before achieving a spontaneous conception have an adjusted odds ratio of 1.35 (95% confidence interval 1.22-1.50) of preterm birth. Pregnancies after IVF confers a greater risk of preterm birth than spontaneous conceptions after more than 1 year of trying, with an adjusted odds ratio of 1.55 (95% CI 1.30-1.85).
The use of fertility medication that stimulates the ovary to release multiple eggs and of IVF with embryo transfer of multiple embryos has been implicated as an important factor in preterm birth. Maternal medical conditions increase the risk of preterm birth. Often labor has to be induced for medical reasons; such conditions include high blood pressure, pre-eclampsia, maternal diabetes, asthma, thyroid disease, and heart disease.
In a number of women anatomical issues prevent the baby from being carried to term. Some women have a weak or short cervix (the strongest predictor of premature birth) Women with vaginal bleeding during pregnancy are at higher risk for preterm birth. While bleeding in the third trimester may be a sign of placenta previa or placental abruption – conditions that occur frequently preterm – even earlier bleeding that is not caused by these conditions is linked to a higher preterm birth rate. Women with abnormal amounts of amniotic fluid, whether too much (polyhydramnios) or too little (oligohydramnios), are also at risk.
The mental status of the women is of significance. Anxiety and depression have been linked to preterm birth.
Finally, the use of tobacco, cocaine, and excessive alcohol during pregnancy increases the chance of preterm delivery. Tobacco is the most commonly abused drug during pregnancy and contributes significantly to low birth weight delivery. Babies with birth defects are at higher risk of being born preterm.
Passive smoking and/or smoking before the pregnancy influences the probability of a preterm birth. The World Health Organization published an international study in March 2014.
Presence of anti-thyroid antibodies is associated with an increased risk preterm birth with an odds ratio of 1.9 and 95% confidence interval of 1.1–3.5.
A 2004 systematic review of 30 studies on the association between intimate partner violence and birth outcomes concluded that preterm birth and other adverse outcomes, including death, are higher among abused pregnant women than among non-abused women.
The Nigerian cultural method of abdominal massage has been shown to result in 19% preterm birth among women in Nigeria, plus many other adverse outcomes for the mother and baby. This ought not be confused with massage conducted by a fully trained and licensed massage therapist or by significant others trained to provide massage during pregnancy, which has been shown to have numerous positive results during pregnancy, including the reduction of preterm birth, less depression, lower cortisol, and reduced anxiety.
Factors increasing the risk (to either the woman, the fetus/es, or both) of pregnancy complications beyond the normal level of risk may be present in a woman's medical profile either before she becomes pregnant or during the pregnancy. These pre-existing factors may relate to physical and/or mental health, and/or to social issues, or a combination.
Some common risk factors include:
- Age of either parent
- Adolescent parents
- Older parents
- Exposure to environmental toxins in pregnancy
- Exposure to recreational drugs in pregnancy:
- Ethanol during pregnancy can cause fetal alcohol syndrome and fetal alcohol spectrum disorder.
- Tobacco smoking and pregnancy, when combined, causes twice the risk of premature rupture of membranes, placental abruption and placenta previa. Also, it causes 30% higher odds of the baby being born prematurely.
- Prenatal cocaine exposure is associated with, for example, premature birth, birth defects and attention deficit disorder.
- Prenatal methamphetamine exposure can cause premature birth and congenital abnormalities. Other investigations have revealed short-term neonatal outcomes to include small deficits in infant neurobehavioral function and growth restriction when compared to control infants. Also, prenatal methamphetamine use is believed to have long-term effects in terms of brain development, which may last for many years.
- Cannabis in pregnancy is possibly associated with adverse effects on the child later in life.
- Exposure to Pharmaceutical drugs in pregnancy. Anti-depressants, for example, may increase risks of such outcomes as preterm delivery.
- Ionizing radiation
- Risks arising from previous pregnancies:
- Complications experienced during a previous pregnancy are more likely to recur.
- Many previous pregnancies. Women who have had five previous pregnancies face increased risks of very rapid labor and excessive bleeding after delivery.
- Multiple previous fetuses. Women who have had more than one fetus in a previous pregnancy face increased risk of mislocated placenta.
- Multiple pregnancy, that is, having more than one fetus in a single pregnancy.
- Social and socioeconomic factors. Generally speaking, unmarried women and those in lower socioeconomic groups experience an increased level of risk in pregnancy, due at least in part to lack of access to appropriate prenatal care.
- Unintended pregnancy. Unintended pregnancies preclude preconception care and delays prenatal care. They preclude other preventive care, may disrupt life plans and on average have worse health and psychological outcomes for the mother and, if birth occurs, the child.
- Height. Pregnancy in women whose height is less than 1.5 meters (5 feet) correlates with higher incidences of preterm birth and underweight babies. Also, these women are more likely to have a small pelvis, which can result in such complications during childbirth as shoulder dystocia.
- Weight
- Low weight: Women whose pre-pregnancy weight is less than 45.5 kilograms (100 pounds) are more likely to have underweight babies.
- Obese women are more likely to have very large babies, potentially increasing difficulties in childbirth. Obesity also increases the chances of developing gestational diabetes, high blood pressure, preeclampsia, experiencing postterm pregnancy and/or requiring a cesarean delivery.
- Intercurrent disease in pregnancy, that is, a disease and condition not necessarily directly caused by the pregnancy, such as diabetes mellitus in pregnancy, SLE in pregnancy or thyroid disease in pregnancy.
Some disorders and conditions can mean that pregnancy is considered high-risk (about 6-8% of pregnancies in the USA) and in extreme cases may be contraindicated. High-risk pregnancies are the main focus of doctors specialising in maternal-fetal medicine.
Serious pre-existing disorders which can reduce a woman's physical ability to survive pregnancy include a range of congenital defects (that is, conditions with which the woman herself was born, for example, those of the heart or , some of which are listed above) and diseases acquired at any time during the woman's life.
While active maternal tobacco smoking has well established adverse perinatal outcomes such as LBW, that mothers who smoke during pregnancy are twice as likely to give birth to low-birth weight infants. Review on the effects of passive maternal smoking, also called environmental tobacco exposure (ETS), demonstrated that increased risks of infants with LBW were more likely to be expected in ETS-exposed mothers.
Regarding environmental toxins in pregnancy, elevated blood lead levels in pregnant women, even those well below 10 ug/dL can cause miscarriage, premature birth, and LBW in the offspring. With 10 ug/dL as the Centers for Disease Control and Prevention's “level of concern”, this cut-off value really needs to arise more attentions and implementations in the future.
The combustion products of solid fuel in developing countries can cause many adverse health issues in people. Because a majority of pregnant women in developing countries, where rate of LBW is high, are heavily exposed to indoor air pollution, increased relative risk translates into substantial population attributable risk of 21% of LBW.
One environmental exposure which has been found to increase the risk of low birth weight is particulate matter, a component of ambient air pollution. Because particulate matter is composed of extremely small particles, even nonvisible levels can be inhaled and present harm to the fetus. Particulate matter exposure can cause inflammation, oxidative stress, endocrine disruption, and impaired oxygen transport access to the placenta, all of which are mechanisms for heightening the risk of low birth weight. To reduce exposure to particulate matter, pregnant women can monitor the EPA’s Air Quality Index and take personal precautionary measures such as reducing outdoor activity on low quality days, avoiding high-traffic roads/intersections, and/or wearing personal protective equipment (i.e., facial mask of industrial design). Indoor exposure to particulate matter can also be reduced through adequate ventilation, as well as use of clean heating and cooking methods.
A correlation between maternal exposure to CO and low birth weight has been reported that the effect on birth weight of increased ambient CO was as large as the effect of the mother smoking a pack of cigarettes per day during pregnancy.
It has been revealed that adverse reproductive effects (e.g., risk for LBW) were correlated with maternal exposure to air pollution combustion emissions in Eastern Europe and North America.
Mercury is a known toxic heavy metal that can harm fetal growth and health, and there has been evidence showing that exposure to mercury (via consumption of large oily fish) during pregnancy may be related to higher risks of LBW in the offspring.
It was revealed that, exposure of pregnant women to airplane noise was found to be associated with low birth weight. Aircraft noise exposure caused adverse effects on fetal growth leading to low birth weight and preterm infants.
Smoking during pregnancy can result in lower birth weight as well as deformities in the baby. Smoking nearly doubles the risk of low birthweight babies. In 2004, 11.9% of babies born to smokers had low birthweight as compared to only 7.2% of babies born to nonsmokers. More specifically, infants born to smokers weigh on average 200 grams less than infants born to women who do not smoke.
The nicotine in cigarette smoke constricts the blood vessels in placenta and carbon monoxide, which is poisonous, enters the baby's bloodstream, replacing some of the valuable oxygen molecules carried by hemoglobin in the red blood cells. Moreover, because the fetus cannot breathe the smoke out, he has to wait for the placenta to clear it. These effects account for the fact that, on average, babies born to smoking mothers are usually born too early and have low birth weight (less than 2,500 grams or 5.5 pounds), making it more likely the baby will become sick or die.
Premature and low birth weight babies face an increased risk of serious health problems as newborns have chronic lifelong disabilities such as cerebral palsy (a set of motor conditions causing physical disabilities), mental retardation and learning problems.
Low birthweight, pre-term birth and pre-eclampsia have been associated with maternal periodontitis exposure. But the strength of the observed associations is inconsistent and vary according to the population studied, the means of periodontal assessment and the periodontal disease classification employed. However the best is that the risk of low birth weight can be reduced with very simple therapy. Treatment of periodontal disease during gestation period is safe and reduction in inflammatory burden reduces the risk of preterm birth as well as low birth weight.
Sudden infant death syndrome (SIDS) is the sudden death of an infant that is unexplainable by the infant's history. The death also remains unexplainable upon autopsy. Infants exposed to smoke, both during pregnancy and after birth, are found to be more at risk of SIDS due to the increased levels of nicotine often found in SIDS cases. Infants exposed to smoke during pregnancy are up to three times more likely to die of SIDS that children born to non-smoking mothers.
A number of studies have shown that tobacco use is a significant factor in miscarriages among pregnant smokers, and that it contributes to a number of other threats to the health of the fetus. Smoking and pregnancy, combined, cause twice the risk of premature rupture of membranes, placental abruption and placenta previa. Also, it causes 30% higher odds of the baby being born prematurely.
Cannabis in pregnancy is the subject of various scientific studies, usually regarding whether it has effects on the child later in life.
Effects found by Fergusson, D. M., Horwood, L. J., & Northstone, K. (2002) where that cannabis had a negative effect on babies. They were found to weigh significantly less, as well having shorter birth lengths, and had smaller head circumferences than babies who were not exposed to prenatal cannabis. Marijuana use has been shown to affect global motion perception by considerably increasing it, unlike alcohol that significantly decreases it.
The use of recreational drugs in pregnancy can cause various pregnancy complications.
- Ethanol during pregnancy can cause fetal alcohol syndrome and fetal alcohol spectrum disorder. Studies have shown that light to moderate drinking during pregnancy might not pose a risk to the fetus, although no amount of alcohol during pregnancy can be guaranteed to be absolutely safe.
- Tobacco smoking during pregnancy can cause a wide range of behavioral, neurological, and physical difficulties. Smoking during pregnancy causes twice the risk of premature rupture of membranes, placental abruption and placenta previa. Smoking is associated with 30% higher odds of preterm birth.
- Prenatal cocaine exposure is associated with premature birth, birth defects and attention deficit disorder.
- Prenatal methamphetamine exposure can cause premature birth and congenital abnormalities. Short-term neonatal outcomes show small deficits in infant neurobehavioral function and growth restriction. Long-term effects in terms of impaired brain development may also be caused by methamphetamine use.
- Cannabis in pregnancy has been shown to be teratogenic in large doses in animals, but has not shown any teratogenic effects in humans.
Intrauterine exposure to environmental toxins in pregnancy has the potential to cause adverse effects on the development of the embryo/fetus and to cause pregnancy complications. Air pollution has been associated with low birth weight infants. Conditions of particular severity in pregnancy include mercury poisoning and lead poisoning. To minimize exposure to environmental toxins, the "American College of Nurse-Midwives" recommends: checking whether the home has lead paint, washing all fresh fruits and vegetables thoroughly and buying organic produce, and avoiding cleaning products labeled "toxic" or any product with a warning on the label.
Pregnant women can also be exposed to toxins in the workplace, including airborne particles. The effects of wearing N95 filtering facepiece respirators are similar for pregnant women as non-pregnant women, and wearing a respirator for one hour does not affect the fetal heart rate.
Breastfeeding is associated with a lower risk of SIDS. It is not clear if co-sleeping among mothers who breastfeed without any other risk factors increased SIDS risk.
SIDS rates decrease with increasing maternal age, with teenage mothers at greatest risk. Delayed or inadequate prenatal care also increases risk. Low birth weight is a significant risk factor. In the United States from 1995 to 1998, the SIDS death rate for infants weighing 1000–1499 g was 2.89/1000, while for a birth weight of 3500–3999 g, it was only 0.51/1000. Premature birth increases the risk of SIDS death roughly fourfold. From 1995 to 1998, the U.S. SIDS rate for births at 37–39 weeks of gestation was 0.73/1000, while the SIDS rate for births at 28–31 weeks of gestation was 2.39/1000.
Anemia has also been linked to SIDS (note, however, that per item 6 in the list of epidemiologic characteristics below, extent of anemia cannot be evaluated at autopsy because an infant's total hemoglobin can only be measured during life.). SIDS incidence rises from zero at birth, is highest from two to four months of age, and declines toward zero after the infant's first year. Baby boys have a ~50% higher risk of SIDS than girls.
In the United States, intrauterine hypoxia and birth asphyxia were listed together as the tenth leading cause of neonatal death.
Recommendations for pregnant women with regard to CMV infection:
- Throughout the pregnancy, practice good personal hygiene, especially handwashing with soap and water, after contact with diapers or oral secretions (particularly with a child who is in day care). Sharing of food, eating and drinking utensils, and contact with toddlers' saliva should be avoided.
- Women who develop a mononucleosis-like illness during pregnancy should be evaluated for CMV infection and counseled about the possible risks to the unborn child.
- Laboratory testing for antibody to CMV can be performed to determine if a woman has already had CMV infection.
- Recovery of CMV from the cervix or urine of women at or before the time of delivery does not warrant a cesarean section.
- The demonstrated benefits of breast-feeding outweigh the minimal risk of acquiring CMV from the breast-feeding mother.
- There is no need to either screen for CMV or exclude CMV-excreting children from schools or institutions because the virus is frequently found in many healthy children and adults.
Treatment with hyperimmune globulin in mothers with primary CMV infection has been shown to be effective in preventing congenital disease in several studies. One study did not show significant decrease in the risk of congenital cytomegalovirus infection.
Vaccinating the majority of the population is effective at preventing congenital rubella syndrome.
Some women have a greater risk of developing hypertension during pregnancy. These are:
- Women with chronic hypertension (high blood pressure before becoming pregnant).
- Women who developed high blood pressure or preeclampsia during a previous pregnancy, especially if these conditions occurred early in the pregnancy.
- Women who are obese prior to pregnancy.
- Pregnant women under the age of 20 or over the age of 40.
- Women who are pregnant with more than one baby.
- Women with diabetes, kidney disease, rheumatoid arthritis, lupus, or scleroderma.
The following have been identified as risk factors for placenta previa:
- Previous placenta previa (recurrence rate 4–8%), caesarean delivery, myomectomy or endometrium damage caused by D&C.
- Women who are younger than 20 are at higher risk and women older than 35 are at increasing risk as they get older.
- Alcohol use during pregnancy was previous listed as a risk factor, but is discredited by this article.
- Women who have had previous pregnancies ( multiparity ), especially a large number of closely spaced pregnancies, are at higher risk due to uterine damage.
- Smoking during pregnancy; cocaine use during pregnancy
- Women with a large placentae from twins or erythroblastosis are at higher risk.
- Race is a controversial risk factor, with some studies finding that people from Asia and Africa are at higher risk and others finding no difference.
- Placental pathology (Vellamentous insertion, succinturiate lobes, bipartite i.e. bilobed placenta etc.)
- Baby is in an unusual position: breech (buttocks first) or transverse (lying horizontally across the womb).
Placenta previa is itself a risk factor of placenta accreta.
Most healthy people working with infants and children face no special risk from CMV infection. However, for women of child-bearing age who previously have not been infected with CMV, there is a potential risk to the developing unborn child (the risk is described above in the Pregnancy section). Contact with children who are in day care, where CMV infection is commonly transmitted among young children (particularly toddlers), may be a source of exposure to CMV. Since CMV is transmitted through contact with infected body fluids, including urine and saliva, child care providers (meaning day care workers, special education teachers, as well as mothers) should be educated about the risks of CMV infection and the precautions they can take. Day care workers appear to be at a greater risk than hospital and other health care providers, and this may be due in part to the increased emphasis on personal hygiene in the health care setting.
Recommendations for individuals providing care for infants and children:
- Employees should be educated concerning CMV, its transmission, and hygienic practices, such as handwashing, which minimize the risk of infection.
- Susceptible nonpregnant women working with infants and children should not routinely be transferred to other work situations.
- Pregnant women working with infants and children should be informed of the risk of acquiring CMV infection and the possible effects on the unborn child.
- Routine laboratory testing for CMV antibody in female workers is not specifically recommended due to its high occurrence, but can be performed to determine their immune status.
Treatment of infants suffering birth asphyxia by lowering the core body temperature is now known to be an effective therapy to reduce mortality and improve neurological outcome in survivors, and hypothermia therapy for neonatal encephalopathy begun within 6 hours of birth significantly increases the chance of normal survival in affected infants.
There has long been a debate over whether newborn infants with birth asphyxia should be resuscitated with 100% oxygen or normal air. It has been demonstrated that high concentrations of oxygen lead to generation of oxygen free radicals, which have a role in reperfusion injury after asphyxia. Research by Ola Didrik Saugstad and others led to new international guidelines on newborn resuscitation in 2010, recommending the use of normal air instead of 100% oxygen.
Preeclampsia is a condition that typically starts after the 20th week of pregnancy and is related to increased blood pressure and protein in the mother's urine (as a result of kidney problems). Preeclampsia affects the placenta, and it can affect the mother's kidney, liver, and brain. When preeclampsia causes seizures, the condition is known as eclampsia--the second leading cause of maternal death in the U.S. Preeclampsia is also a leading cause of fetal complications, which include low birth weight, premature birth, and stillbirth.
There is no proven way to prevent preeclampsia. Most women who develop signs of preeclampsia, however, are closely monitored to lessen or avoid related problems. The only way to "cure" preeclampsia is to deliver the baby.
Exact cause of placenta previa is unknown. It is hypothesized to be related to abnormal vascularisation of the endometrium caused by scarring or atrophy from previous trauma, surgery, or infection. These factors may reduce differential growth of lower segment, resulting in less upward shift in placental position as pregnancy advances.
Early onset sepsis can occur in the first week of life. It usually is apparent on the first day after birth. This type of infection is usually acquired before the birth of the infant. Premature rupture of membranes and other obstetrical complications can add to the risk of early-onset sepsis. If the amniotic membrane has been ruptured greater than 18 hours before delivery the infant may be at more risk for this complication. Prematurity, low birth weight, chorioamnionitis, maternal urinary tract infection and/or maternal fever are complications that increase the risk for early-onset sepsis. Early onset sepsis is indicated by serious respiratory symptoms. The infant usually suffers from pneumonia, hypothermia, or shock. The mortality rate is 30 to 50%.
Drug and alcohol use during pregnancy can lead to many health problems in the baby besides NAS. These may include:
- Birth defects
- Low birth weight
- Premature birth
- Small head circumference
- Sudden infant death syndrome (SIDS)
- Problems with development and behavior
Neonatal abstinence syndrome treatment can last from 1 week to 6 months. Even after medical treatment for NAS is over and babies leave the hospital, they may need continued treatment for weeks or months.